Sada-atsu Mukai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2351329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect. Biomaterials, 2022, 282, 121385.	11.4	4
2	Magnetically Navigated Protein Transduction In Vivo using Iron Oxideâ€Nanogel Chaperone Hybrid. Advanced Healthcare Materials, 2021, 10, e2001988.	7.6	6
3	Magnetic Drug Navigation: Magnetically Navigated Protein Transduction In Vivo using Iron Oxideâ€Nanogel Chaperone Hybrid (Adv. Healthcare Mater. 9/2021). Advanced Healthcare Materials, 2021, 10, 2170046.	7.6	0
4	Antigen Delivery to Antigen-Presenting Cells for Adaptive Immune Response by Self-Assembled Anionic Polysaccharide Nanogel Vaccines. Biomacromolecules, 2020, 21, 621-629.	5.4	30
5	Synergistic anti-tumor efficacy by combination therapy of a self-assembled nanogel vaccine with an immune checkpoint anti-PD-1 antibody. RSC Advances, 2020, 10, 8074-8079.	3.6	13
6	Magnetically Navigated Intracellular Delivery of Extracellular Vesicles Using Amphiphilic Nanogels. Bioconjugate Chemistry, 2019, 30, 2150-2155.	3.6	32
7	Supramacromolecular injectable hydrogels by crystallization-driven self-assembly of carbohydrate-conjugated poly(2-isopropyloxazoline)s for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 6362-6369.	5.8	17
8	Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomaterials Science and Engineering, 2019, 5, 759-767.	5.2	33
9	Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones. Advanced Healthcare Materials, 2018, 7, e1800729.	7.6	47
10	Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform. Biomacromolecules, 2017, 18, 3913-3923.	5.4	27
11	Magnetically Guided Protein Transduction by Hybrid Nanogel Chaperones with Iron Oxide Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 11377-11381.	13.8	50
12	Magnetically Guided Protein Transduction by Hybrid Nanogel Chaperones with Iron Oxide Nanoparticles. Angewandte Chemie, 2016, 128, 11549-11553.	2.0	5
13	Self-Assembled Nanogels of Cholesterol-Bearing Hydroxypropyl Cellulose: A Thermoresponsive Building Block for Nanogel Tectonic Materials. Langmuir, 2016, 32, 12283-12289.	3.5	23
14	Nanoscopic Structural Investigation of Physically Cross-Linked Nanogels Formed from Self-Associating Polymers. Journal of Physical Chemistry B, 2016, 120, 11996-12002.	2.6	12
15	Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Scientific Reports, 2016, 6, 18346.	3.3	107
16	Advanced Artificial Extracellular Matrices Using Amphiphilic Nanogel-Cross-Linked Thin Films To Anchor Adhesion Proteins and Cytokines. ACS Biomaterials Science and Engineering, 2016, 2, 375-384.	5.2	13
17	A light sensitive self-assembled nanogel as a tecton for protein patterning materials. Chemical Communications, 2016, 52, 1222-1225.	4.1	23
18	Simple Preparation and Characterization of Viscoelastic Gels Induced by Multiple Intermolecular Interactions Using Low-Molecular-Weight Species. Bulletin of the Chemical Society of Japan, 2015, 88, 1575-1580.	3.2	0

Sada-atsu Mukai

#	Article	IF	CITATIONS
19	Nanocarrierâ€Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drugâ€Delivery Systems. Advanced Materials, 2015, 27, 5080-5088.	21.0	53
20	Amylose-Based Cationic Star Polymers for siRNA Delivery. BioMed Research International, 2015, 2015, 1-6.	1.9	6
21	Glyco Star Polymers as Helical Multivalent Host and Biofunctional Nano-Platform. ACS Macro Letters, 2015, 4, 367-371.	4.8	16
22	Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold. Biomaterials, 2015, 37, 107-115.	11.4	65
23	Microrheology of polysaccharide nanogel-integrated system. Colloid and Polymer Science, 2014, 292, 325-331.	2.1	5
24	Anomalous long-range repulsion between silica surfaces induced by density inhomogeneities in supercritical ethanol. Soft Matter, 2014, 10, 6645-6650.	2.7	5
25	Nanogel-Based Immunologically Stealth Vaccine Targets Macrophages in the Medulla of Lymph Node and Induces Potent Antitumor Immunity. ACS Nano, 2014, 8, 9209-9218.	14.6	117
26	Phase separation in binary polymer solution: Gelatin/Poly(ethylene glycol) system. Journal of Molecular Liquids, 2014, 200, 2-6.	4.9	28
27	Cycloamyloseâ€nanogel drug delivery systemâ€mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment. Cancer Science, 2014, 105, 1616-1625.	3.9	46
28	2P314 Development of hybrid exosomes by liposome fusion(28. Bioengineering,Poster,The 52nd Annual) Tj ETQ	q0 0 0 rgB 0.1	T /Overlock 1
29	Optical Reactors for Microscopic Visualization of Chemical Processes in Sub- and Supercritical Water. Biofuels and Biorefineries, 2014, , 133-156.	0.5	0
30	Phase behaviors of agarose gel. AIP Advances, 2013, 3, .	1.3	18
31	Non-Engineered Nanoparticles of C60. Scientific Reports, 2013, 3, 2094.	3.3	13
32	Microbial growth at hyperaccelerations up to 403,627 × <i>g</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7997-8002.	7.1	52
33	Anomalously stable dispersions of graphite in water/acetone mixtures. Journal of Colloid and Interface Science, 2010, 346, 96-99.	9.4	24
34	Nanoparticles of Fullerene C ₆₀ from Engineering of Antiquity. Journal of Physical Chemistry C, 2010, 114, 849-856.	3.1	34
35	Comment on "Effect of Pressure on Colloidal Behavior in Hydrothermal Water― Journal of Physical Chemistry B, 2009, 113, 3251-3252.	2.6	2
36	Stabilization of C60 Nanoparticles by Protein Adsorption and Its Implications for Toxicity Studies. Chemical Research in Toxicology, 2007, 20, 854-858.	3.3	88

Sada-atsu Mukai

#	Article	IF	CITATIONS
37	Supercritical EthanolA Fascinating Dispersion Medium for Silica Nanoparticles. Journal of Physical Chemistry B, 2007, 111, 8169-8174.	2.6	22
38	Top-down Preparation of Dispersions of C60Nanoparticles in Organic Solvents. Chemistry Letters, 2006, 35, 396-397.	1.3	29
39	A high-temperature and -pressure microscope cell to observe colloidal behaviors in subcritical and supercritical water: Brownian motion of colloids near a wall. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 483-488.	4.7	24
40	Facile Generation of Fullerene Nanoparticles by Hand-Grinding. Advanced Materials, 2006, 18, 729-732.	21.0	89
41	Dynamical phase separation under laser scanning. Chemical Physics Letters, 2005, 402, 529-534.	2.6	10
42	Optical levitation of a droplet under a linear increase in gravitational acceleration. Chemical Physics Letters, 2005, 414, 389-392.	2.6	5
43	Optical Trapping of a Growing Water Droplet in Air. Journal of Physical Chemistry B, 2003, 107, 3988-3990.	2.6	58
44	Liquid/liquid dynamic phase separation induced by a focused laser. Applied Physics Letters, 2003, 83, 2557-2559.	3.3	33