Jia Grace Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350617/publications.pdf

Version: 2024-02-01

136950 123424 6,984 64 32 61 citations h-index g-index papers 65 65 65 8487 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Luttinger-liquid behaviour in carbon nanotubes. Nature, 1999, 397, 598-601.	27.8	1,396
2	ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters, 2004, 85, 5923-5925.	3.3	766
3	Zinc Oxide Nanostructures: Synthesis and Properties. Journal of Nanoscience and Nanotechnology, 2005, 5, 1561-1573.	0.9	675
4	Quasi-one-dimensional metal oxide materialsâ€"Synthesis, properties and applications. Materials Science and Engineering Reports, 2006, 52, 49-91.	31.8	526
5	Gate-refreshable nanowire chemical sensors. Applied Physics Letters, 2005, 86, 123510.	3.3	412
6	ZnO Nanowires Synthesized by Vapor Trapping CVD Method. Chemistry of Materials, 2004, 16, 5133-5137.	6.7	340
7	Photoluminescence and polarized photodetection of single ZnO nanowires. Applied Physics Letters, 2004, 85, 6128-6130.	3.3	330
8	High-performance ZnO nanowire field effect transistors. Applied Physics Letters, 2006, 89, 133113.	3.3	223
9	Low Temperature Growth of Boron Nitride Nanotubes on Substrates. Nano Letters, 2005, 5, 2528-2532.	9.1	176
10	Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology, 2010, 21, 485502.	2.6	139
11	\hat{l}^2 -Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor. Applied Physics Letters, 2005, 87, 222102.	3.3	118
12	Finite size effect in ZnO nanowires. Applied Physics Letters, 2007, 90, 113101.	3.3	115
13	Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires. Journal of Physical Chemistry C, 2010, 114, 17120-17126.	3.1	115
14	Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Applied Physics Letters, 2006, 89, 213110.	3.3	114
15	Formation of Anodic Aluminum Oxide with Serrated Nanochannels. Nano Letters, 2010, 10, 2766-2771.	9.1	106
16	Synthesis of Magnesium Borate (Mg2B2O5) Nanowires by Chemical Vapor Deposition Method. Chemistry of Materials, 2004, 16, 2512-2514.	6.7	92
17	Templateâ€based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays. Advanced Materials, 2008, 20, 4575-4578.	21.0	92
18	Chemical sensing with ZnO nanowire field-effect transistor. IEEE Nanotechnology Magazine, 2006, 5, 393-396.	2.0	80

#	Article	IF	CITATIONS
19	Applications of Tunable TiO ₂ Nanotubes as Nanotemplate and Photovoltaic Device. Chemistry of Materials, 2010, 22, 5707-5711.	6.7	74
20	Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chemical Physics Letters, 2011, 501, 446-450.	2.6	71
21	Shape Anisotropy and Magnetization Modulation in Hexagonal Cobalt Nanowires. Advanced Functional Materials, 2008, 18, 1573-1578.	14.9	68
22	Electrical transport in boron nanowires. Applied Physics Letters, 2003, 83, 5280-5282.	3.3	64
23	Optical size effects in ultrathin ZnO nanowires. Nanotechnology, 2007, 18, 435701.	2.6	57
24	ZnO Nanowire Field-Effect Transistors. IEEE Transactions on Electron Devices, 2008, 55, 2977-2987.	3.0	55
25	Field effect transistor based on single crystalline InSb nanowire. Journal of Materials Chemistry, 2011, 21, 2459.	6.7	54
26	Structures and Electrical Properties of Ag–Tetracyanoquinodimethane Organometallic Nanowires. IEEE Nanotechnology Magazine, 2005, 4, 238-241.	2.0	53
27	Continuous Wave Nanowire Lasing. Nano Letters, 2013, 13, 3602-3606.	9.1	52
28	Weak Localization and Electronâ [°] Electron Interactions in Indium-Doped ZnO Nanowires. Nano Letters, 2009, 9, 3991-3995.	9.1	50
29	Temperature dependent conduction and UV induced metal-to-insulator transition in ZnO nanowires. Applied Physics Letters, 2008, 92, 212113.	3.3	49
30	Photon-activated switch behavior in the single-electron transistor with a superconducting island. Physical Review B, 1995, 51, 9407-9410.	3.2	44
31	Quantum Transport and Nano Angle-resolved Photoemission Spectroscopy on the Topological Surface States of Single Sb2Te3 Nanowires. Scientific Reports, 2016, 6, 29493.	3.3	43
32	Self-Assembly of Periodic Serrated Nanostructures. Chemistry of Materials, 2009, 21, 253-258.	6.7	38
33	Amphoteric Nature of Sn in CdS Nanowires. Nano Letters, 2014, 14, 518-523.	9.1	32
34	Charge transport and photon-assisted tunneling in the NSN single-electron transistor. Physica B: Condensed Matter, 1994, 203, 327-339.	2.7	31
35	Temperature dependence of even-odd electron-number effects in the single-electron transistor with a superconducting island. Physical Review B, 1995, 51, 12649-12652.	3.2	25
36	Core–shell CdTe–TiO2 nanostructured solar cell. Journal of Materials Chemistry, 2012, 22, 10441.	6.7	23

#	Article	IF	CITATIONS
37	Electronic Transport with Dielectric Confinement in Degenerate InN Nanowires. Nano Letters, 2012, 12, 2768-2772.	9.1	23
38	Structural and optical verification of residual strain effect in single crystalline CdTe nanowires. Nano Research, 2014, 7, 228-235.	10.4	23
39	Electrical conduction mechanisms in natively doped ZnO nanowires (II). Nanotechnology, 2010, 21, 145202.	2.6	21
40	Flexible Symmetric Supercapacitors Based on TiO\$_2\$ and Carbon Nanotubes. IEEE Nanotechnology Magazine, 2011, 10, 706-709.	2.0	21
41	Magnetic-field-induced crossover from 2etoeperiodicity in the superconducting single-electron transistor. Physical Review B, 1996, 53, 3543-3549.	3.2	17
42	One dimensional transport in carbon nanotubes. Microelectronic Engineering, 1999, 47, 417-420.	2.4	17
43	Synthesis, Characterizations and Applications of Cadmium Chalcogenide Nanowires: A Review. Journal of Materials Science and Technology, 2015, 31, 556-572.	10.7	17
44	Phase coherent transport in InSb nanowires. Applied Physics Letters, 2012, 101, 082103.	3.3	15
45	Temperature-dependent photoconductance of heavily doped ZnO nanowires. Nano Research, 2011, 4, 1110-1116.	10.4	14
46	Parity effect in superconducting islands with increasing lengths. Physical Review B, 1998, 57, 120-122.	3.2	13
47	Vertically Aligned Antimony Nanowires as Solid-State pH Sensors. ChemPhysChem, 2007, 8, 57-61.	2.1	13
48	Growth of p-type Si nanotubes by catalytic plasma treatments. Nanotechnology, 2008, 19, 365609.	2.6	12
49	Spin dependent transport in ferromagnet/superconductor/ferromagnet single electron transistor. Journal of Applied Physics, 2005, 97, 10A708.	2.5	11
50	Nature of AX Centers in Antimony-Doped Cadmium Telluride Nanobelts. Nano Letters, 2015, 15, 974-980.	9.1	10
51	Quantum-interference transport through surface layers of indium-doped ZnO nanowires. Nanotechnology, 2013, 24, 245203.	2.6	9
52	Core-shell structured Si/ZnO photovoltaics. Materials Letters, 2015, 140, 59-63.	2.6	9
53	Effect of island length on the Coulomb modulation in single-electron transistors. Physical Review B, 1998, 57, 4591-4598.	3.2	8
54	Enhanced high-field transport critical current density of superconducting bulk Y-Ba-Cu-O prepared by rapid solidification and directional annealing. Physical Review B, 1992, 46, 8509-8514.	3.2	7

#	Article	IF	CITATIONS
55	High Tc superconductors prepared by rapid quenching and directional annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 133, 127-131.	5.6	6
56	The single-electron transistor as an ultrasensitive microwave detector. IEEE Transactions on Applied Superconductivity, 1995, 5, 2604-2607.	1.7	6
57	Flux periodic oscillations and phase-coherent transport in GeTe nanowire-based devices. Nature Communications, 2021, 12, 754.	12.8	6
58	Proximityâ€Effectâ€Induced Superconductivity in Nb/Sb 2 Te 3 â€Nanoribbon/Nb Junctions. Annalen Der Physik, 2020, 532, 2000273.	2.4	5
59	Inertial spin alignment in a circular magnetic nanotube. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2083-2086.	2.1	1
60	Microwave AC Resonance Induced Phase Change in Sb ₂ Te ₃ Nanowires. Nano Letters, 2020, 20, 8668-8674.	9.1	1
61	Preface: To Professor Tinkham on his 75th Birthday. Journal of Superconductivity and Novel Magnetism, 2004, 17, 537-537.	0.5	O
62	Nanoscale antimony pH probe. , 2006, , .		0
63	Fundamental Properties of Zinc Oxide Nanowires. , 2016, , 1292-1301.		O
64	Fundamental Properties of Zinc Oxide Nanowires. , 2015, , 1-10.		О