
Birgit Schilling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2350084/publications.pdf Version: 2024-02-01

RIDCIT SCHILLING

#	Article	IF	CITATIONS
1	Advanced mass spectrometry-based methods for protein molecular-structural biologists. , 2022, , 311-326.		8
2	MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 2022, 601, 446-451.	27.8	300
3	Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila Melanogaster. Nature Communications, 2022, 13, .	12.8	12
4	Comprehensive proteomic quantification of bladder stone progression in a cystinuric mouse model using data-independent acquisitions. PLoS ONE, 2022, 17, e0250137.	2.5	3
5	Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches. Methods in Molecular Biology, 2021, 2228, 225-235.	0.9	11
6	Quantitative Proteomic Analysis of the Senescenceâ€Associated Secretory Phenotype by Dataâ€Independent Acquisition. Current Protocols, 2021, 1, e32.	2.9	25
7	Improved SILAC Quantification with Data-Independent Acquisition to Investigate Bortezomib-Induced Protein Degradation. Journal of Proteome Research, 2021, 20, 1918-1927.	3.7	36
8	Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell, 2021, 20, e13325.	6.7	59
9	Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nature Protocols, 2021, 16, 2471-2498.	12.0	92
10	Proximity labeling and other novel mass spectrometric approaches for spatiotemporal protein dynamics. Expert Review of Proteomics, 2021, 18, 757-765.	3.0	6
11	Accumulation of "Old Proteins―and the Critical Need for MSâ€based Protein Turnover Measurements in Aging and Longevity. Proteomics, 2020, 20, e1800403.	2.2	24
12	SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nature Communications, 2020, 11, 5927.	12.8	35
13	Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNF-alpha. Development (Cambridge), 2020, 147, .	2.5	12
14	Lysine and Arginine Protein Post-translational Modifications by Enhanced DIA Libraries: Quantification in Murine Liver Disease. Journal of Proteome Research, 2020, 19, 4163-4178.	3.7	18
15	Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nature Metabolism, 2020, 2, 1265-1283.	11.9	206
16	The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Review of Proteomics, 2020, 17, 297-308.	3.0	40
17	Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization. Journal of Visualized Experiments, 2020, , .	0.3	7
18	Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Molecular Biology of the Cell, 2020, 31, 1069-1084.	2.1	30

#	Article	IF	CITATIONS
19	A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 2020, 18, e3000599.	5.6	694
20	Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. Journal of Proteome Research, 2020, 19, 1447-1458.	3.7	253
21	Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPI². Journal of Biological Chemistry, 2020, 295, 2787-2803.	3.4	45
22	Emerging mass spectrometry-based proteomics methodologies for novel biomedical applications. Biochemical Society Transactions, 2020, 48, 1953-1966.	3.4	22
23	Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity. ELife, 2020, 9, .	6.0	24
24	Plasma proteomic biomarker signature of age predicts health and life span. ELife, 2020, 9, .	6.0	78
25	Quantification of Insoluble Protein Aggregation in Caenorhabditis elegans during Aging with a Novel Data-Independent Acquisition Workflow. Journal of Visualized Experiments, 2020, , .	0.3	3
26	Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Frontiers in Microbiology, 2019, 10, 1604.	3.5	122
27	Proteome and Secretome Dynamics of Human Retinal Pigment Epithelium in Response to Reactive Oxygen Species. Scientific Reports, 2019, 9, 15440.	3.3	22
28	Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 2384-2398.	6.1	85
29	Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metabolism, 2019, 30, 735-753.e4.	16.2	136
30	SILAC Analysis Reveals Increased Secretion of Hemostasis-Related Factors by Senescent Cells. Cell Reports, 2019, 28, 3329-3337.e5.	6.4	94
31	High-Resolution Mass Spectrometry to Identify and Quantify Acetylation Protein Targets. Methods in Molecular Biology, 2019, 1983, 3-16.	0.9	15
32	Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Molecular Cell, 2019, 74, 844-857.e7.	9.7	123
33	Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. MBio, 2019, 10, .	4.1	94
34	JNK modifies neuronal metabolism to promote proteostasis and longevity. Aging Cell, 2019, 18, e12849.	6.7	18
35	Global Lysine Acetylation in <i>Escherichia coli</i> Results from Growth Conditions That Favor Acetate Fermentation. Journal of Bacteriology, 2019, 201, .	2.2	34
36	Quantification of Site-specific Protein Lysine Acetylation and Succinylation Stoichiometry Using Data-independent Acquisition Mass Spectrometry. Journal of Visualized Experiments, 2018, , .	0.3	9

#	Article	IF	CITATIONS
37	Protein Turnover in Aging and Longevity. Proteomics, 2018, 18, e1700108.	2.2	78
38	Panorama Public: A Public Repository for Quantitative Data Sets Processed in Skyline. Molecular and Cellular Proteomics, 2018, 17, 1239-1244.	3.8	177
39	An acetylatable lysine controls CRP function in <i>E. coli</i> . Molecular Microbiology, 2018, 107, 116-131.	2.5	51
40	Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE, 2018, 13, e0208973.	2.5	38
41	Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. MBio, 2018, 9, .	4.1	86
42	Simultaneous Quantification of the Acetylome and Succinylome by â€~Oneâ€Pot' Affinity Enrichment. Proteomics, 2018, 18, e1800123.	2.2	31
43	Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metabolism, 2018, 28, 866-880.e15.	16.2	154
44	Identifying ubiquitinated proteins and aggregates. Aging, 2018, 10, 2549-2550.	3.1	6
45	Generation of High-Quality SWATH® Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOFA® Mass Spectrometers. Methods in Molecular Biology, 2017, 1550, 223-233.	0.9	75
46	Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Review of Proteomics, 2017, 14, 419-429.	3.0	114
47	MSstatsQC: Longitudinal System Suitability Monitoring and Quality Control for Targeted Proteomic Experiments. Molecular and Cellular Proteomics, 2017, 16, 1335-1347.	3.8	21
48	Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nature Communications, 2017, 8, 291.	12.8	423
49	Ancient Regulatory Role of Lysine Acetylation in Central Metabolism. MBio, 2017, 8, .	4.1	105
50	PIQED: automated identification and quantification of protein modifications from DIA-MS data. Nature Methods, 2017, 14, 646-647.	19.0	52
51	INVESTIGATING PROTEIN HOMEOSTASIS IN C.ÂELEGANS AND C.ÂBRIGGSAE STRAINS USING MASS SPECTROMETRY. Innovation in Aging, 2017, 1, 1210-1211.	0.1	1
52	Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. PLoS ONE, 2017, 12, e0179621.	2.5	17
53	Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4. Journal of Biological Chemistry, 2016, 291, 17496-17509.	3.4	37
54	Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss. Neuron, 2016, 90, 245-260.	8.1	195

#	Article	IF	CITATIONS
55	Stable nuclear expression of <i>ATP8</i> and <i>ATP6</i> genes rescues a mtDNA Complex V <i>null</i> mutant. Nucleic Acids Research, 2016, 44, gkw756.	14.5	35
56	Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH). Journal of the American Society for Mass Spectrometry, 2016, 27, 1758-1771.	2.8	73
57	Vitamin D Promotes Protein Homeostasis and Longevity via the Stress Response Pathway Genes skn-1, ire-1, and xbp-1. Cell Reports, 2016, 17, 1227-1237.	6.4	65
58	Chapter 9. Informatics Solutions for Selected Reaction Monitoring. New Developments in Mass Spectrometry, 2016, , 178-199.	0.2	0
59	The <i>E. coli</i> sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen, 2015, 4, 66-83.	3.0	87
60	Protein acetylation dynamics in response to carbon overflow in <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2015, 98, 847-863.	2.5	164
61	Wavelet-Based Peak Detection and a New Charge Inference Procedure for MS/MS Implemented in ProteoWizard's msConvert. Journal of Proteome Research, 2015, 14, 1299-1307.	3.7	38
62	MS1 Peptide Ion Intensity Chromatograms in MS2 (SWATH) Data Independent Acquisitions. Improving Post Acquisition Analysis of Proteomic Experiments. Molecular and Cellular Proteomics, 2015, 14, 2405-2419.	3.8	57
63	Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma. Molecular and Cellular Proteomics, 2015, 14, 2357-2374.	3.8	153
64	SIRT1 deacetylates RORÎ ³ t and enhances Th17 cell generation. Journal of Experimental Medicine, 2015, 212, 607-617.	8.5	126
65	Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows. Analytical Chemistry, 2015, 87, 10222-10229.	6.5	88
66	Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nature Medicine, 2015, 21, 1154-1162.	30.7	398
67	Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. Journal of Biological Chemistry, 2015, 290, 19287-19306.	3.4	20
68	Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation. PLoS ONE, 2014, 9, e94816.	2.5	249
69	Iron promotes protein insolubility and aging in C. elegans. Aging, 2014, 6, 975-988.	3.1	57
70	Ubiquitin-specific peptidase 9, X-linked (USP9X) modulates activity of mammalian target of rapamycin (mTOR) Journal of Biological Chemistry, 2014, 289, 14965.	3.4	2
71	Phosphoprotein Secretome of Tumor Cells as a Source of Candidates for Breast Cancer Biomarkers in Plasma. Molecular and Cellular Proteomics, 2014, 13, 1034-1049.	3.8	41
72	A framework for installable external tools in Skyline. Bioinformatics, 2014, 30, 2521-2523.	4.1	36

#	Article	IF	CITATIONS
73	Site-specific acylation changes in the lipid A of <i>Escherichia coli lpxL</i> mutants grown at high temperatures. Innate Immunity, 2014, 20, 269-282.	2.4	11
74	Variation and quantification among a target set of phosphopeptides in human plasma by multiple reaction monitoring and SWATHâ€MS2 dataâ€independent acquisition. Electrophoresis, 2014, 35, 3487-3497.	2.4	22
75	Panorama: A Targeted Proteomics Knowledge Base. Journal of Proteome Research, 2014, 13, 4205-4210.	3.7	205
76	RPL24: a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cancer cell growth. Oncotarget, 2014, 5, 5165-5176.	1.8	34
77	Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS). Molecular and Cellular Proteomics, 2013, 12, 2623-2639.	3.8	100
78	Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6601-6606.	7.1	414
79	Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline. Molecular and Cellular Proteomics, 2012, 11, 202-214.	3.8	428
80	Ligand Binding Promotes CDK-Dependent Phosphorylation of ER-Alpha on Hinge Serine 294 but Inhibits Ligand-Independent Phosphorylation of Serine 305. Molecular Cancer Research, 2012, 10, 1120-1132.	3.4	27
81	Ubiquitin-specific Peptidase 9, X-linked (USP9X) Modulates Activity of Mammalian Target of Rapamycin (mTOR). Journal of Biological Chemistry, 2012, 287, 21164-21175.	3.4	47
82	QuaMeter: Multivendor Performance Metrics for LC–MS/MS Proteomics Instrumentation. Analytical Chemistry, 2012, 84, 5845-5850.	6.5	50
83	Lectin Chromatography/Mass Spectrometry Discovery Workflow Identifies Putative Biomarkers of Aggressive Breast Cancers. Journal of Proteome Research, 2012, 11, 2508-2520.	3.7	49
84	Proteomic Analysis of Neisseria gonorrhoeae Biofilms Shows Shift to Anaerobic Respiration and Changes in Nutrient Transport and Outermembrane Proteins. PLoS ONE, 2012, 7, e38303.	2.5	64
85	ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging. Journal of Proteome Research, 2011, 10, 2896-2904.	3.7	30
86	A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Analytical Biochemistry, 2011, 408, 71-85.	2.4	59
87	Identification of new modulators and protein alterations in nonâ€ a poptotic programmed cell death. Journal of Cellular Biochemistry, 2010, 111, 1401-1412.	2.6	59
88	Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance. Molecular and Cellular Proteomics, 2010, 9, 242-254.	3.8	148
89	Targeted Quantitation of Site-Specific Cysteine Oxidation in Endogenous Proteins Using a Differential Alkylation and Multiple Reaction Monitoring Mass Spectrometry Approach. Molecular and Cellular Proteomics, 2010, 9, 1400-1410.	3.8	120
90	The Mycobacterium bovis Bacille Calmette-Guérin Phagosome Proteome. Molecular and Cellular Proteomics, 2010, 9, 32-53.	3.8	58

#	Article	IF	CITATIONS
91	Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Proteome Research, 2010, 9, 761-776.	3.7	505
92	Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses. Molecular and Cellular Proteomics, 2010, 9, 225-241.	3.8	167
93	Systematic Mapping of Posttranslational Modifications in Human Estrogen Receptor- $\hat{l}\pm$ with Emphasis on Novel Phosphorylation Sites. Molecular and Cellular Proteomics, 2009, 8, 467-480.	3.8	64
94	Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature Biotechnology, 2009, 27, 633-641.	17.5	958
95	IDPicker 2.0: Improved Protein Assembly with High Discrimination Peptide Identification Filtering. Journal of Proteome Research, 2009, 8, 3872-3881.	3.7	320
96	Preferentially Increased Nitration of α-Synuclein at Tyrosine-39 in a Cellular Oxidative Model of Parkinson's Disease. Analytical Chemistry, 2009, 81, 7823-7828.	6.5	103
97	Partial Acetylation of Lysine Residues Improves Intraprotein Cross-Linking. Analytical Chemistry, 2008, 80, 951-960.	6.5	34
98	Identification of LpxL, a Late Acyltransferase of Francisella tularensis. Infection and Immunity, 2007, 75, 5518-5531.	2.2	22
99	Characterization of Lipid A Acylation Patterns inFrancisella tularensis,Francisellanovicida, andFrancisellaphilomiragiaUsing Multiple-Stage Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization on an Intermediate Vacuum Source Linear Ion Trap. Analytical Chemistry, 2007, 79. 1034-1042.	6.5	51
100	Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau. PLoS ONE, 2007, 2, e536.	2.5	291
101	Small-scale immunopurification of cytochrome c oxidase for a high-throughput multiplexing analysis of enzyme activity and amount. Biotechnology and Applied Biochemistry, 2007, 48, 167.	3.1	13
102	Novel Pathways Associated with Quinone-Induced Stress in Breast Cancer Cells. Drug Metabolism Reviews, 2006, 38, 601-613.	3.6	19
103	Huntingtin Phosphorylation Sites Mapped by Mass Spectrometry. Journal of Biological Chemistry, 2006, 281, 23686-23697.	3.4	131
104	A pilot proteomic study of amyloid precursor interactors in Alzheimer's disease. Annals of Neurology, 2005, 58, 277-289.	5.3	62
105	Rapid Purification and Mass Spectrometric Characterization of Mitochondrial NADH Dehydrogenase (Complex I) from Rodent Brain and a Dopaminergic Neuronal Cell Line. Molecular and Cellular Proteomics, 2005, 4, 84-96.	3.8	47
106	Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I. FEBS Letters, 2005, 579, 2485-2490.	2.8	60
107	Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. FASEB Journal, 2004, 18, 287-299.	0.5	84
108	A Novel Lectin, DltA, Is Required for Expression of a Full Serum Resistance Phenotype in Haemophilus ducreyi. Infection and Immunity, 2004, 72, 3418-3428.	2.2	25

#	Article	IF	CITATIONS
109	Molecular Components of a Cell Death Pathway Activated by Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2004, 279, 177-187.	3.4	130
110	Determining cysteine oxidation status using differential alkylation. International Journal of Mass Spectrometry, 2004, 236, 117-127.	1.5	33
111	Novel Modification of Lipid A of Francisella tularensis. Infection and Immunity, 2004, 72, 5340-5348.	2.2	135
112	Isotopically labeled crosslinking reagents: resolution of mass degeneracy in the identification of crosslinked peptides. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4023-4026.	2.2	48
113	MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides. Journal of the American Society for Mass Spectrometry, 2003, 14, 834-850.	2.8	250
114	Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nature Biotechnology, 2003, 21, 1047-1054.	17.5	237
115	Metabolic incorporation of unnatural sialic acids into Haemophilus ducreyi lipooligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3089-3094.	7.1	53
116	Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9590-9595.	7.1	199
117	Characterization of lipooligosaccharides from Haemophilus ducreyi containing polylactosamine repeats. Journal of the American Society for Mass Spectrometry, 2002, 13, 724-734.	2.8	11
118	Biosynthesis of Sialylated Lipooligosaccharides inHaemophilus ducreyils Dependent on Exogenous Sialic Acid and Not Mannosamine. Incorporation Studies UsingN-Acylmannosamine Analogues,N-Glycolylneuraminic Acid, and13C-LabeledN-Acetylneuraminic Acidâ€. Biochemistry, 2001, 40, 12666-12677.	2.5	37
119	14-3-3 Interacts with Regulator of G Protein Signaling Proteins and Modulates Their Activity. Journal of Biological Chemistry, 2000, 275, 28167-28172.	3.4	104
120	Construction and Characterization of Haemophilus ducreyi Lipooligosaccharide (LOS) Mutants Defective in Expression of Heptosyltransferase III and β1,4-Glucosyltransferase: Identification of LOS Glycoforms Containing Lactosamine Repeats. Infection and Immunity, 2000, 68, 3352-3361.	2.2	36
121	Cloning and Characterization of the Lipooligosaccharide Galactosyltransferase II Gene of Haemophilus ducreyi. Journal of Bacteriology, 2000, 182, 2292-2298.	2.2	24
122	Fragmentation and sequencing of cyclic peptides by matrix-assisted laser desorption/ionization post-source decay mass spectrometry. , 1999, 13, 2174-2179.		24
123	Suzuki Coupling of Chiral 1,1′-Binaphthyl Systems â^' New Synthetic Routes to Functionalize the 2- and 2,2′-Positions. European Journal of Organic Chemistry, 1998, 1998, 701-709.	2.4	25
124	Synthesis and Structure of 2,2′ â€Borylâ€, Germylâ€Silylâ€, and Stannylâ€Substituted 1,1′ â€Binaphthyl Sy Chemische Berichte, 1997, 130, 923-932.	stems. 0.2	51
125	Crystal structure of 2,2'-bis(trimethylgermyl)-1,1'-binaphthyl, (C10H6Ge(CH3)3)2. Zeitschrift Fur Kristallographie - New Crystal Structures, 1997, 212, 146-148.	0.3	0
126	Crystal structure of 2,2,7,7-tetramethyldinaphtho[2,1-c;1',2',-e]-1,2,7-oxa-disilepin,(C10H6Si(CH3)2)2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 1997, 212, 149-150.	0.3	0

#	Article	IF	CITATIONS
127	Crystal structure of 2,2'-bis(trimethylsilyl)-1,1'-binaphthyl, (C10H6Si(CH3)3)2. Zeitschrift Fur Kristallographie - New Crystal Structures, 1997, 212, 143-145.	0.3	Ο
128	A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. SSRN Electronic Journal, 0, , .	0.4	5
129	Extracellular Nicotinamide Phosphoribosyltransferase Is a Component of the Senescence-Associated Secretory Phenotype. Frontiers in Endocrinology, 0, 13, .	3.5	5