Patty J Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2349558/publications.pdf

Version: 2024-02-01

66 papers 10,639 citations

94433 37 h-index 65 g-index

68 all docs

68 docs citations

68 times ranked 20864 citing authors

#	Article	IF	CITATIONS
1	Sex differences and altered mitophagy in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L761-L769.	2.9	5
2	MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease. JCI Insight, 2021, 6, .	5.0	16
3	PINK1 mediates the protective effects of thyroid hormone T3 in hyperoxia-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1118-L1125.	2.9	7
4	Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Science Translational Medicine, 2021, 13, .	12.4	7
5	PECAM-1 is Associated WithOutcomes and Response to Treatment in Pulmonary Arterial Hypertension. American Journal of Cardiology, 2020, 127, 198-199.	1.6	1
6	Endothelial tollâ€like receptor 4 maintains lung integrity via epigenetic suppression of p16 ^{INK4a} . Aging Cell, 2019, 18, e12914.	6.7	16
7	Endothelial Stanniocalcin 1 Maintains Mitochondrial Bioenergetics and Prevents Oxidant-Induced Lung Injury <i>via</i> Toll-Like Receptor 4. Antioxidants and Redox Signaling, 2019, 30, 1775-1796.	5.4	20
8	Cell Death in the Lung: The Apoptosis–Necroptosis Axis. Annual Review of Physiology, 2019, 81, 375-402.	13.1	190
9	Endothelial cellâ€secreted MIF reduces pericyte contractility and enhances neutrophil extravasation. FASEB Journal, 2019, 33, 2171-2186.	0.5	24
10	Elevated Activation of Neutrophil Toll-Like Receptors in Patients with Acute Severe Leptospirosis: An Observational Study. American Journal of Tropical Medicine and Hygiene, 2019, 101, 585-589.	1.4	5
11	The DNA repair transcriptome in severeÂCOPD. European Respiratory Journal, 2018, 52, 1701994.	6.7	29
12	Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L782-L796.	2.9	71
13	A review of micronutrients in sepsis: the role of thiamine, <scp> < scp>-carnitine, vitamin C, selenium and vitamin D. Nutrition Research Reviews, 2018, 31, 281-290.</scp>	4.1	47
14	Effects of bone marrow-derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF- $\langle i \rangle \hat{1} \pm \langle i \rangle$, IL- $1 < i \rangle \hat{1}^2 < \langle i \rangle$, and IFN- $< i \rangle \hat{1}^3 < \langle i \rangle$. Physiological Reports, 2018, 6, e13831.	1.7	7
15	Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L882-L892.	2.9	40
16	Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nature Medicine, 2018, 24, 39-49.	30.7	236
17	Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype. Journal of Clinical Investigation, 2018, 128, 4343-4358.	8.2	64
18	Proteomics data on MAP Kinase Kinase 3 knock out bone marrow derived macrophages exposed to cigarette smoke extract. Data in Brief, 2017, 13, 320-325.	1.0	1

#	Article	IF	CITATIONS
19	Complexity of macrophage migration inhibitory factor (MIF) and other angiogenic biomarkers profiling in pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 730-733.	1.7	10
20	SH2 Domain–Containing Phosphatase-2 Is a Novel Antifibrotic Regulator in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 500-514.	5. 6	49
21	MIF and Pulmonary Disease. , 2017, , 135-144.		0
22	SILAC based protein profiling data of MKK3 knockout mouse embryonic fibroblasts. Data in Brief, 2016, 7, 418-422.	1.0	1
23	MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radical Biology and Medicine, 2016, 101, 102-115.	2.9	24
24	Dyspnea in Communityâ€Dwelling Older Persons: A Multifactorial Geriatric Health Condition. Journal of the American Geriatrics Society, 2016, 64, 2042-2050.	2.6	31
25	<i>MIF</i> allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7917-E7926.	7.1	54
26	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
27	The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation. Immunity, 2016, 44, 246-258.	14.3	107
28	An Endothelial Hsp70-TLR4 Axis Limits Nox3 Expression and Protects Against Oxidant Injury in Lungs. Antioxidants and Redox Signaling, 2016, 24, 991-1012.	5.4	18
29	An endothelial TLR4â€VEGFR2 pathway mediates lung protection against oxidantâ€induced injury. FASEB Journal, 2016, 30, 1317-1327.	0.5	15
30	Cathelicidin Insufficiency in Patients with Fatal Leptospirosis. PLoS Pathogens, 2016, 12, e1005943.	4.7	22
31	Endothelial CD74 mediates macrophage migration inhibitory factor protection in hyperoxic lung injury. FASEB Journal, 2015, 29, 1940-1949.	0.5	39
32	Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nature Communications, 2015, 6, 6221.	12.8	84
33	MKK3 deletion improves mitochondrial quality. Free Radical Biology and Medicine, 2015, 87, 373-384.	2.9	12
34	Role of macrophage migration inhibitory factor in age-related lung disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1-L10.	2.9	39
35	Endothelial Uncoupling Protein 2 Regulates Mitophagy and Pulmonary Hypertension During Intermittent Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1166-1178.	2.4	99
36	MKK3 mediates inflammatory response through modulation of mitochondrial function. Free Radical Biology and Medicine, 2015, 83, 139-148.	2.9	17

#	Article	IF	CITATIONS
37	Oxidants in Acute and Chronic Lung Disease. Journal of Blood & Lymph, 2014, 04, .	0.0	15
38	Endothelial PINK1 Mediates the Protective Effects of NLRP3 Deficiency during Lethal Oxidant Injury. Journal of Immunology, 2014, 192, 5296-5304.	0.8	63
39	Macrophage migration inhibitory factor deficiency in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L487-L496.	2.9	43
40	Cathepsin E Promotes Pulmonary Emphysema via Mitochondrial Fission. American Journal of Pathology, 2014, 184, 2730-2741.	3.8	35
41	MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L604-L619.	2.9	74
42	Increased Risk of Radiographic Emphysema in HIV Is Associated With Elevated Soluble CD14 and Nadir CD4. Chest, 2014, 146, 1543-1553.	0.8	96
43	Lung endothelial HOâ€1 targeting <i>in vivo</i> using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. FASEB Journal, 2013, 27, 4041-4058.	0.5	44
44	Endothelial MKK3 Is a Critical Mediator of Lethal Murine Endotoxemia and Acute Lung Injury. Journal of Immunology, 2013, 190, 1264-1275.	0.8	36
45	A Protective Hsp70–TLR4 Pathway in Lethal Oxidant Lung Injury. Journal of Immunology, 2013, 191, 1393-1403.	0.8	45
46	Therapeutic Applications of Carbon Monoxide. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	4.0	41
47	Heme Oxygenase-1 in Lung Disease. Current Drug Targets, 2010, 11, 1532-1540.	2.1	73
48	VEGFâ€induced heme oxygenaseâ€1 confers cytoprotection from lethal hyperoxia in vivo. FASEB Journal, 2007, 21, 1422-1432.	0.5	62
49	Endothelial STAT3 is essential for the protective effects of HOâ€1 in oxidantâ€induced lung injury. FASEB Journal, 2006, 20, 2156-2158.	0.5	98
50	Inducible Activation of TLR4 Confers Resistance to Hyperoxia-Induced Pulmonary Apoptosis. Journal of Immunology, 2006, 176, 4950-4958.	0.8	58
51	Toll-like receptor 4 deficiency causes pulmonary emphysema. Journal of Clinical Investigation, 2006, 116, 3050-3059.	8.2	199
52	Heme oxygenase modulates small intestine leukocyte adhesion following hindlimb ischemia/reperfusion by regulating the expression of intercellular adhesion molecule-1*. Critical Care Medicine, 2005, 33, 2563-2570.	0.9	37
53	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11 , 1173 - 1179 .	30.7	1,291
54	Cutting Edge: TLR4 Deficiency Confers Susceptibility to Lethal Oxidant Lung Injury. Journal of Immunology, 2005, 175, 4834-4838.	0.8	142

#	Article	IF	CITATIONS
55	Carbon Monoxide Differentially Modulates STAT1 and STAT3 and Inhibits Apoptosis via a Phosphatidylinositol 3-Kinase/Akt and p38 Kinase-dependent STAT3 Pathway during Anoxia-Reoxygenation Injury. Journal of Biological Chemistry, 2005, 280, 8714-8721.	3.4	178
56	ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. Journal of Clinical Investigation, 2005, 116, 163-173.	8.2	111
57	Small Interfering RNA Targeting Heme Oxygenase-1 Enhances Ischemia-Reperfusion-induced Lung Apoptosis. Journal of Biological Chemistry, 2004, 279, 10677-10684.	3.4	230
58	Pathways of cell signaling in hyperoxia. Free Radical Biology and Medicine, 2003, 35, 341-350.	2.9	171
59	Carbon Monoxide Induces Cytoprotection in Rat Orthotopic Lung Transplantation via Anti-Inflammatory and Anti-Apoptotic Effects. American Journal of Pathology, 2003, 163, 231-242.	3.8	207
60	Carbon Monoxide Modulates Fas/Fas Ligand, Caspases, and Bcl-2 Family Proteins via the p38î± Mitogen-activated Protein Kinase Pathway during Ischemia-Reperfusion Lung Injury. Journal of Biological Chemistry, 2003, 278, 22061-22070.	3.4	149
61	Carbon Monoxide Inhibition of Apoptosis during Ischemia-Reperfusion Lung Injury Is Dependent on the p38 Mitogen-activated Protein Kinase Pathway and Involves Caspase 3. Journal of Biological Chemistry, 2003, 278, 1248-1258.	3.4	251
62	Reactive Oxygen Species and Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Mediate Hyperoxia-Induced Cell Death in Lung Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 305-315.	2.9	187
63	Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L815-L829.	2.9	98
64	AP-1 and STAT mediate hyperoxia-induced gene transcription of heme oxygenase-1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L175-L182.	2.9	95
65	Signal Transduction Pathways in Hyperoxia-Induced Lung Cell Death. Molecular Genetics and Metabolism, 2000, 71, 359-370.	1.1	123
66	Parallel Induction of Heme Oxygenase-1 and Chemoprotective Phase 2 Enzymes by Electrophiles and Antioxidants: Regulation by Upstream Antioxidant-Responsive Elements (ARE). Molecular Medicine, 1995, 1, 827-837.	4.4	278