
William D Gosling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2348456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361, 920-923.	12.6	307
2	Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 2018, 361, .	12.6	260
3	Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 499-514.	4.0	206
4	Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology, 2009, 153, 70-85.	1.5	142
5	Holocene fire and occupation in Amazonia: records from two lake districts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 209-218.	4.0	136
6	North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience, 2012, 5, 817-820.	12.9	116
7	Vegetation development in an Amazonian peatland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374, 242-255.	2.3	116
8	A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science, 2005, 20, 703-714.	2.1	111
9	Atlas of the tropical West African pollen flora. Review of Palaeobotany and Palynology, 2013, 199, 1-135.	1.5	107
10	Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography, 2017, 40, 1381-1394.	4.5	105
11	Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate of the Past, 2016, 12, 483-523.	3.4	102
12	Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past, 2009, 5, 725-767.	3.4	87
13	Longâ€ŧerm drivers of change in <i>Polylepis</i> woodland distribution in the central Andes. Journal of Vegetation Science, 2009, 20, 1041-1052.	2.2	63
14	Updated site compilation of the Latin American Pollen Database. Review of Palaeobotany and Palynology, 2015, 223, 104-115.	1.5	63
15	Modern Pollen-Rain Characteristics of Tall Terra Firme Moist Evergreen Forest, Southern Amazonia. Quaternary Research, 2005, 64, 284-297.	1.7	62
16	Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming. Journal of Biogeography, 2020, 47, 408-420.	3.0	61
17	The impact of oxidation on spore and pollen chemistry. Journal of Micropalaeontology, 2015, 34, 139-149.	3.6	59
18	Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259, 35-50.	2.3	57

#	Article	IF	CITATIONS
19	The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change. Science, 2011, 331, 1055-1058.	12.6	57
20	Quaternary forest associations in lowland tropical West Africa. Quaternary Science Reviews, 2014, 84, 7-25.	3.0	56
21	A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305, 201-214.	2.3	51
22	Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Review of Palaeobotany and Palynology, 2017, 238, 1-6.	1.5	50
23	Twenty-year weathering remeasurements at St Paul's Cathedral, London. Earth Surface Processes and Landforms, 2001, 26, 1129-1142.	2.5	48
24	Paleo-ENSO influence on African environments and early modern humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
25	Changes in spore chemistry and appearance with increasing maturity. Review of Palaeobotany and Palynology, 2014, 201, 41-46.	1.5	46
26	Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen. Review of Palaeobotany and Palynology, 2016, 235, 140-147.	1.5	45
27	Ecological consequences of post-Columbian indigenous depopulation in the Andean–Amazonian corridor. Nature Ecology and Evolution, 2018, 2, 1233-1236.	7.8	45
28	New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change. Regional Environmental Change, 2019, 19, 1623-1642.	2.9	44
29	Terrestrial biosphere changes over the last 120â€ ⁻ kyr. Climate of the Past, 2016, 12, 51-73.	3.4	43
30	The ACER pollen and charcoal database: aÂglobal resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 2017, 9, 679-695.	9.9	38
31	Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru). Journal of Quaternary Science, 2005, 20, 663-670.	2.1	36
32	A 7000â€year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecology Letters, 2019, 22, 925-935.	6.4	36
33	Pollen and spores as a passive monitor of ultraviolet radiation. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	35
34	Columbus' footprint in Hispaniola: A paleoenvironmental record of indigenous and colonial impacts on the landscape of the central Cibao Valley, northern Dominican Republic. Anthropocene, 2018, 22, 66-80.	3.3	34
35	Nonlinear climate change and Andean feedbacks: an imminent turning point?. Global Change Biology, 2010, 16, 3223-3232.	9.5	32
36	Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany, 2018, 27, 411-418.	2.1	31

#	Article	IF	CITATIONS
37	A simple and effective methodology for sampling modern pollen rain in tropical environments. Holocene, 2003, 13, 613-618.	1.7	29
38	Andean microrefugia: testing the Holocene to predict the Anthropocene. New Phytologist, 2016, 212, 510-522.	7.3	29
39	Reconstructing past fire temperatures from ancient charcoal material. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520, 128-137.	2.3	29
40	Pollen and spores as biological recorders of past ultraviolet irradiance. Scientific Reports, 2016, 6, 39269.	3.3	27
41	Polylepis woodland dynamics during the last 20,000Âyears. Journal of Biogeography, 2018, 45, 1019-1030.	3.0	27
42	Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture. Journal of Micropalaeontology, 2019, 38, 83-95.	3.6	27
43	Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312, 115-126.	2.3	26
44	A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the halophytic taxon <i>Nitraria</i> L.(Nitrariaceae). PeerJ, 2018, 6, e5055.	2.0	25
45	A stronger role for long-term moisture change than for CO ₂ in determining tropical woody vegetation change. Science, 2022, 376, 653-656.	12.6	25
46	A statistical sub-sampling tool for extracting vegetation community and diversity information from pollen assemblage data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 408, 48-59.	2.3	24
47	CO2 and fire influence tropical ecosystem stability in response to climate change. Scientific Reports, 2016, 6, 29587.	3.3	24
48	Four thousand years of environmental change and human activity in the Cochabamba Basin, Bolivia. Quaternary Research, 2011, 76, 58-68.	1.7	21
49	Ecosystem service provision sets the pace for pre-Hispanic societal development in the central Andes. Holocene, 2013, 23, 1619-1624.	1.7	21
50	Mauritius on fire: Tracking historical human impacts on biodiversity loss. Biotropica, 2017, 49, 778-783.	1.6	21
51	The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology, 2018, 42, 324-338.	1.5	20
52	Drivers of ecosystem and climate change in tropical West Africa over the past â^¼540 000 years. Journal of Quaternary Science, 2016, 31, 671-677.	2.1	19
53	Human occupation and ecosystem change on Upolu (Samoa) during the Holocene. Journal of Biogeography, 2020, 47, 600-614.	3.0	18
54	Modern pollen-vegetation relationships along a steep temperature gradient in the Tropical Andes of Ecuador. Quaternary Research, 2019, 92, 1-13.	1.7	16

#	Article	IF	CITATIONS
55	Typha as a wetland food resource: evidence from the Tianluoshan site, Lower Yangtze Region, China. Vegetation History and Archaeobotany, 2020, 29, 51-60.	2.1	16
56	Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America. Ecology and Evolution, 2016, 6, 91-112.	1.9	15
57	Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador. Quaternary Research, 2018, 89, 119-133.	1.7	15
58	Columbus' environmental impact in the New World: Land use change in the Yaque River valley, Dominican Republic. Holocene, 2018, 28, 1818-1835.	1.7	15
59	Proxy reconstruction of ultraviolet-B irradiance at the Earth's surface, and its relationship with solar activity and ozone thickness. Holocene, 2020, 30, 155-161.	1.7	15
60	Sporopollenin chemistry and its durability in the geological record: an integration of extant and fossil chemical data across the seed plants. Palaeontology, 2021, 64, 285-305.	2.2	15
61	A modern analogue matching approach to characterize fire temperatures and plant species from charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 578, 110580.	2.3	15
62	Central American climate and microrefugia: A view from the last interglacial. Quaternary Science Reviews, 2019, 205, 224-233.	3.0	14
63	Early to mid-Holocene human activity exerted gradual influences on Amazonian forest vegetation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200498.	4.0	14
64	Scarce fire activity in north and north-western Amazonian forests during the last 10,000 years. Plant Ecology and Diversity, 2021, 14, 143-156.	2.4	14
65	Response of chironomids to late Pleistocene and Holocene environmental change in the eastern Bolivian Andes. Journal of Paleolimnology, 2012, 48, 485-501.	1.6	13
66	Vegetation and climate evolution during the Last Glaciation at Tengchong in Yunnan Province, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 441-452.	2.3	13
67	On the Use of Spores of Coprophilous Fungi Preserved in Sediments to Indicate Past Herbivore Presence. Quaternary, 2022, 5, 30.	2.0	13
68	Legacies of Indigenous land use and cultural burning in the Bolivian Amazon rainforest ecotone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200499.	4.0	12
69	Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393, 76-89.	2.3	11
70	Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model. Climate of the Past, 2016, 12, 1263-1280.	3.4	11
71	Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record. Journal of Paleolimnology, 2017, 58, 437-453.	1.6	11
72	Sex & Bugs & Rock â€~n Roll – getting creative about public engagement. Trends in Ecology and Evolution, 2014, 29, 65-67.	8.7	10

#	Article	IF	CITATIONS
73	Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489, 198-208.	2.3	10
74	Long-Term Vegetation Dynamics in a Megadiverse Hotspot: The Ice-Age Record of a Pre-montane Forest of Central Ecuador. Frontiers in Plant Science, 2018, 9, 196.	3.6	10
75	Local vegetation patterns of a Neolithic environment at the site of Tianluoshan, China, based on coprolite analysis. Review of Palaeobotany and Palynology, 2019, 271, 104101.	1.5	10
76	Modelling the distribution of Amazonian tree species in response to longâ€ŧerm climate change during the Mid‣ate Holocene. Journal of Biogeography, 2020, 47, 1530-1540.	3.0	10
77	30,000 years of landscape and vegetation dynamics in a mid-elevation Andean valley. Quaternary Science Reviews, 2021, 258, 106866.	3.0	9
78	From leaf to soil: <i>n</i> -alkane signal preservation, despite degradation along an environmental gradient in the tropical Andes. Biogeosciences, 2020, 17, 5465-5487.	3.3	9
79	A palaeoecological perspective on the transformation of the tropical Andes by early human activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200497.	4.0	9
80	A biogeographic comment on: Wuster et al. (2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus) Molecular Ecology, 2005, 14, 3615-3617.	3.9	8
81	Response to Comment on "The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change― Science, 2011, 333, 1825-1825.	12.6	7
82	Leaf wax <i>nâ€</i> alkane patterns of six tropical montane tree species show speciesâ€specific environmental response. Ecology and Evolution, 2019, 9, 9120-9128.	1.9	7
83	Carbon sequestration rates indicate ecosystem recovery following human disturbance in the equatorial Andes. PLoS ONE, 2020, 15, e0230612.	2.5	7
84	On the scaling and standardization of charcoal data in paleofire reconstructions. Frontiers of Biogeography, 2021, 13, .	1.8	7
85	Environmental Change in the Humid Tropics and MonsoonalRegions. , 0, , 113-140.		7
86	Precessional forcing of tropical vegetation carbon storage. Journal of Quaternary Science, 2011, 26, 463-467.	2.1	6
87	Multicore Study of Upper Holocene Mire Development in West-Frisia, Northern Netherlands: Ecological and Archaeological Aspects. Quaternary, 2020, 3, 12.	2.0	6
88	Indicators for assessing tropical alpine rehabilitation practices. Ecosphere, 2019, 10, e02595.	2.2	5
89	Modern pollen rain predicts shifts in plant trait composition but not plant diversity along the Andes–Amazon elevational gradient. Journal of Vegetation Science, 2021, 32, e12925.	2.2	5
90	In search of the ice age tropics, a tribute to Prof. Daniel Livingstone and Prof. Paul Colinvaux. Quaternary Research, 2018, 89, 1-6.	1.7	4

#	Article	IF	CITATIONS
91	The climate and vegetation backdrop to hominin evolution in Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200483.	4.0	4
92	Preliminary evidence for green, brown and black worlds in tropical western Africa during the Middle and Late Pleistocene. , 2021, , 13-26.		3
93	A checklist of vascular plants of Ewe-Adakplame Relic Forest in Benin, West Africa. PhytoKeys, 2021, 175, 151-174.	1.0	2
94	Forests protect aquatic communities from detrimental impact by volcanic deposits in the tropical Andes (Ecuador). Regional Environmental Change, 2021, 21, 1.	2.9	2
95	Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa. Grana, 2019, 58, 45-62.	0.8	1