Charlie Hatton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2348260/publications.pdf

Version: 2024-02-01

28 12,455 24 31 papers citations h-index g-index

31 31 31 24167 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	YBX1 mediates translation of oncogenic transcripts to control cell competition in AML. Leukemia, 2022, 36, 426-437.	7.2	18
2	The menin-MLL1 interaction is a molecular dependency in <i>NUP98</i> -rearranged AML. Blood, 2022, 139, 894-906.	1.4	42
3	MLL::AF9 degradation induces rapid changes in transcriptional elongation and subsequent loss of an active chromatin landscape. Molecular Cell, 2022, 82, 1140-1155.e11.	9.7	21
4	MOZ and Menin–MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discovery, 2022, 12, 1804-1823.	9.4	10
5	IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. Nature Cancer, 2022, 3, 595-613.	13.2	16
6	Novel inhibitors of the histone methyltransferase DOT1L show potent antileukemic activity in patient-derived xenografts. Blood, 2020, 136, 1983-1988.	1.4	25
7	Therapeutic targeting of preleukemia cells in a mouse model of <i>NPM1</i> mutant acute myeloid leukemia. Science, 2020, 367, 586-590.	12.6	145
8	A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell, 2019, 36, 660-673.e11.	16.8	231
9	Regulation of GLI Underlies a Role for BET Bromodomains in Pancreatic Cancer Growth and the Tumor Microenvironment. Clinical Cancer Research, 2016, 22, 4259-4270.	7.0	44
10	Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. Journal of Biological Chemistry, 2016, 291, 13014-13027.	3.4	58
11	Preclinical Anticancer Efficacy of BET Bromodomain Inhibitors Is Determined by the Apoptotic Response. Cancer Research, 2016, 76, 1313-1319.	0.9	26
12	Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes. Cancer Research, 2016, 76, 1975-1988.	0.9	89
13	An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition. PLoS ONE, 2016, 11, e0166438.	2.5	108
14	Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. ELife, 2016, 5, .	6.0	70
15	EZH2 Inhibitor Efficacy in Non-Hodgkin's Lymphoma Does Not Require Suppression of H3K27 Monomethylation. Chemistry and Biology, 2014, 21, 1463-1475.	6.0	128
16	Prospective Enterprise-Level Molecular Genotyping of a Cohort of Cancer Patients. Journal of Molecular Diagnostics, 2014, 16, 660-672.	2.8	70
17	Colorectal Cancers from Distinct Ancestral Populations Show Variations in BRAF Mutation Frequency. PLoS ONE, 2013, 8, e74950.	2.5	34
18	Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway. PLoS Genetics, 2012, 8, e1002772.	3.5	489

#	Article	IF	CITATIONS
19	The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483, 603-607.	27.8	6,473
20	Mutations in the <i>DDR2</i> Kinase Gene Identify a Novel Therapeutic Target in Squamous Cell Lung Cancer. Cancer Discovery, 2011, 1, 78-89.	9.4	455
21	High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood, 2011, 117, 2433-2440.	1.4	71
22	Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genetics, 2010, 42, 715-721.	21.4	642
23	MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20411-20416.	7.1	574
24	Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples. PLoS ONE, 2009, 4, e7887.	2.5	316
25	Drug-sensitive <i>FGFR2</i> mutations in endometrial carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8713-8717.	7.1	329
26	Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20007-20012.	7.1	927
27	High-throughput oncogene mutation profiling in human cancer. Nature Genetics, 2007, 39, 347-351.	21.4	927
28	Using UMLS metathesaurus concepts to describe medical images: dermatology vocabulary. Computers in Biology and Medicine, 2006, 36, 89-100.	7.0	9