Claudia Crestini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2348192/publications.pdf

Version: 2024-02-01

38742 51608 8,410 159 50 86 citations g-index h-index papers 168 168 168 7076 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment. ACS Omega, 2022, 7, 4052-4061.	3.5	22
2	Simple Strategies to Modulate the pH-Responsiveness of Lignosulfonate-Based Delivery Systems. Materials, 2022, 15, 1857.	2.9	5
3	Characterization of Organosolv Birch Lignins: Toward Application-Specific Lignin Production. ACS Omega, 2021, 6, 4374-4385.	3.5	18
4	An Analytical Toolbox for Fast and Straightforward Structural Characterisation of Commercially Available Tannins. Molecules, 2021, 26, 2532.	3.8	6
5	Sulfited Tannin Capsules: Novel Stimuli-Responsive Delivery Systems. ACS Omega, 2021, 6, 13192-13203.	3.5	1
6	Chemical Derivatization of Commercially Available Condensed and Hydrolyzable Tannins. ACS Sustainable Chemistry and Engineering, 2021, 9, 10154-10166.	6.7	5
7	Quantitative ³¹ P NMR Analysis of Lignins and Tannins. Journal of Visualized Experiments, 2021, , .	0.3	2
8	Advancements and Complexities in the Conversion of Lignocellulose Into Chemicals and Materials. Frontiers in Chemistry, 2020, 8, 797.	3.6	14
9	Biomimetic Vanadate and Molybdate Systems for Oxidative Upgrading of Iono- and Organosolv Hard- and Softwood Lignins. Processes, 2020, 8, 1161.	2.8	3
10	Sustainable Strategies in the Synthesis of Lignin Nanoparticles for the Release of Active Compounds: A Comparison. ChemSusChem, 2020, 13, 4759-4767.	6.8	20
11	Structural and Thermal Characterization of Novel Organosolv Lignins from Wood and Herbaceous Sources. Processes, 2020, 8, 860.	2.8	29
12	Lignin Fractionation in Segmented Continuous Flow. ChemSusChem, 2020, 13, 4735-4742.	6.8	12
13	Case Study in Kraft Lignin Fractionation: "Structurally Purified―Lignin Fractions—The Role of Solvent H-Bonding Affinity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16803-16813.	6.7	17
14	Lignosulfonate Microcapsules for Delivery and Controlled Release of Thymol and Derivatives. Molecules, 2020, 25, 866.	3.8	27
15	Fractionation of industrial lignins: opportunities and challenges. Green Chemistry, 2020, 22, 4722-4746.	9.0	91
16	Functionalized Organosolv Lignins Suitable for Modifications of Hard Surfaces. ACS Sustainable Chemistry and Engineering, 2020, 8, 7628-7638.	6.7	7
17	Deposition Efficacy of Natural and Synthetic Antioxidants on Fabrics. Applied Sciences (Switzerland), 2020, 10, 6213.	2.5	3
18	Characterization of Eucalyptus nitens Lignins Obtained by Biorefinery Methods Based on Ionic Liquids. Molecules, 2020, 25, 425.	3.8	10

#	Article	IF	Citations
19	Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 2019, 14, 2627-2647.	12.0	272
20	Molecularly imprinted conducting polymer for determination of a condensed lignin marker. Sensors and Actuators B: Chemical, 2019, 295, 186-193.	7.8	14
21	Lignin for Nano―and Microscaled Carrier Systems: Applications, Trends, and Challenges. ChemSusChem, 2019, 12, 2038-2038.	6.8	9
22	A Study of the Effect of Kosmotropic and Chaotropic Ions on the Release Characteristics of Lignin Microcapsules under Stimuli-Responsive Conditions. ACS Omega, 2019, 4, 6979-6993.	3.5	27
23	Lignin for Nano―and Microscaled Carrier Systems: Applications, Trends, and Challenges. ChemSusChem, 2019, 12, 2039-2054.	6.8	200
24	Facile Isolation of LCC-Fraction from Organosolv Lignin by Simple Soxhlet Extraction. Polymers, 2019, 11, 225.	4.5	11
25	Lipoxygenase: Unprecedented Carbon-Centered Lignin Activation. ACS Sustainable Chemistry and Engineering, 2018, 6, 5085-5096.	6.7	8
26	Stimuliâ€Responsive Tannin–Fe ^{III} Hybrid Microcapsules Demonstrated by the Active Release of an Antiâ€Tuberculosis Agent. ChemSusChem, 2018, 11, 3975-3991.	6.8	21
27	Understanding Lignin Aggregation Processes. A Case Study: Budesonide Entrapment and Stimuli Controlled Release from Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 9342-9351.	6.7	154
28	Chapter 15. Lignin Analytics. RSC Energy and Environment Series, 2018, , 413-476.	0.5	4
29	Bio-based chemicals: general discussion. Faraday Discussions, 2017, 202, 227-245.	3.2	0
30	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	3.2	0
31	On the structure of softwood kraft lignin. Green Chemistry, 2017, 19, 4104-4121.	9.0	368
32	Synthesis of nano- and microstructures from proanthocyanidins, tannic acid and epigallocatechin-3-O-gallate for active delivery. Green Chemistry, 2017, 19, 5074-5091.	9.0	23
33	Structural changes of lignin in biorefinery pretreatments and consequences to enzyme-lignin interactions - OPEN ACCESS. Nordic Pulp and Paper Research Journal, 2017, 32, 550-571.	0.7	38
34	Chemoenzymatic Fractionation and Characterization of Pretreated Birch Outer Bark. ACS Sustainable Chemistry and Engineering, 2016, 4, 5289-5302.	6.7	12
35	Fractional Precipitation of Wheat Straw Organosolv Lignin: Macroscopic Properties and Structural Insights. ACS Sustainable Chemistry and Engineering, 2016, 4, 5136-5151.	6.7	49
36	A Perspective on Lignin Refining, Functionalization, and Utilization. ACS Sustainable Chemistry and Engineering, 2016, 4, 5089-5089.	6.7	23

#	Article	IF	Citations
37	Ultrasound-Assisted Functionalization of Polyphenols. , 2016, , 995-1020.		O
38	Detailed Chemical Composition of Condensed Tannins via Quantitative ³¹ P NMR and HSQC Analyses: <i>Acacia catechu</i> , <i>Schinopsis balansae</i> , and <i>Acacia mearnsii</i> , Journal of Natural Products, 2016, 79, 2287-2295.	3.0	38
39	Isolation and Characterization of Organosolv and Alkaline Lignins from Hardwood and Softwood Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 5181-5193.	6.7	113
40	Gel Permeation Chromatography in Determining Molecular Weights of Lignins: Critical Aspects Revisited for Improved Utility in the Development of Novel Materials. ACS Sustainable Chemistry and Engineering, 2016, 4, 5167-5180.	6.7	75
41	Coordination Complexes and One-Step Assembly of Lignin for Versatile Nanocapsule Engineering. ACS Sustainable Chemistry and Engineering, 2016, 4, 5194-5203.	6.7	67
42	Solvent screening for the fractionation of industrial kraft lignin. Holzforschung, 2016, 70, 11-20.	1.9	161
43	Ultrasound-Assisted Functionalization of Polyphenols. , 2016, , 1-26.		0
44	Identification and quantification of radical species by 31P NMR-based spin trapping — A case study: NH4OH/H2O2-based hair bleaching. Microchemical Journal, 2015, 121, 112-121.	4.5	3
45	A novel and efficient immobilised tannase coated by the layer-by-layer technique in the hydrolysis of gallotannins and ellagitannins. Microchemical Journal, 2015, 123, 139-147.	4.5	8
46	Reversible crosslinking of lignin via the furan–maleimide Diels–Alder reaction. Green Chemistry, 2015, 17, 4991-5000.	9.0	71
47	11. Lignin biorefinery: structure, pretreatment and use. , 2015, , 257-282.		0
48	Modification of Kraft Lignin to Expose Diazobenzene Groups: Toward pH- and Light-Responsive Biobased Polymers. Biomacromolecules, 2015, 16, 2979-2989.	5.4	35
49	Obtaining lignin nanoparticles by sonication. Ultrasonics Sonochemistry, 2015, 23, 369-375.	8.2	204
50	Biorefineries., 2015,,.		20
51	Ultrasound Functionalization of Polyphenols. , 2015, , 1-26.		O
52	Tailoring the molecular and thermo–mechanical properties of kraft lignin by ultrafiltration. Journal of Applied Polymer Science, 2014, 131, .	2.6	99
53	Ultrasound Driven Assembly of Lignin into Microcapsules for Storage and Delivery of Hydrophobic Molecules. Biomacromolecules, 2014, 15, 1634-1643.	5.4	221
54	Tannin Structural Elucidation and Quantitative ³¹ P NMR Analysis. 1. Model Compounds. Journal of Agricultural and Food Chemistry, 2013, 61, 9307-9315.	5.2	45

#	Article	IF	Citations
55	Oxidative upgrade of lignin – Recent routes reviewed. European Polymer Journal, 2013, 49, 1151-1173.	5.4	390
56	Tannin Structural Elucidation and Quantitative 31P NMR Analysis. 2. Hydrolyzable Tannins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 2013, 61, 9316-9324.	5. 2	52
57	QUANTITATIVE HSQC ANALYSES OF LIGNIN: A PRACTICAL COMPARISON. Computational and Structural Biotechnology Journal, 2013, 6, e201303016.	4.1	59
58	Selective Synthesis of DOPA and DOPA Peptides by Native and Immobilized Tyrosinase in Organic Solvent. ChemPlusChem, 2013, 78, 325-330.	2.8	10
59	Dye Degradation by Layerâ€byâ€Layer Immobilised Peroxidase/Redox Mediator Systems. ChemCatChem, 2013, 5, 1407-1415.	3.7	19
60	8 Conversion of lignin: chemical technologies and biotechnologies – oxidative strategies in lignin upgrade. , 2012, , 167-206.		1
61	Lignin Structural Changes During Liquefaction in Acidified Ethylene Glycol. Journal of Wood Chemistry and Technology, 2012, 32, 342-360.	1.7	57
62	Influence of TiO2 on prebiotic thermal synthesis of the Gly-Gln polymer. Amino Acids, 2012, 42, 2079-2088.	2.7	19
63	Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols. Bioorganic and Medicinal Chemistry, 2012, 20, 157-166.	3.0	38
64	Formamide and the origin of life. Physics of Life Reviews, 2012, 9, 84-104.	2.8	226
65	Formamide in non-life/life transition. Physics of Life Reviews, 2012, 9, 121-123.	2.8	0
66	Milled Wood Lignin: A Linear Oligomer. Biomacromolecules, 2011, 12, 3928-3935.	5 . 4	255
67	Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. Comptes Rendus - Biologies, 2011, 334, 812-823.	0.2	52
68	The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide. Origins of Life and Evolution of Biospheres, 2011, 41, 317-330.	1.9	42
69	Catalytic effects of Murchison Material: Prebiotic Synthesis and Degradation of RNA Precursors. Origins of Life and Evolution of Biospheres, 2011, 41, 437-451.	1.9	34
70	Elucidation of Lignin Structure by Quantitative 2D NMR. Chemistry - A European Journal, 2011, 17, 9529-9535.	3.3	245
71	A novel and efficient oxidative functionalization of lignin by layer-by-layer immobilised Horseradish peroxidase. Bioorganic and Medicinal Chemistry, 2011, 19, 440-447.	3.0	25
72	Understanding the radical mechanism of lipoxygenases using 31P NMR spin trapping. Bioorganic and Medicinal Chemistry, 2011, 19, 3022-3028.	3.0	16

#	Article	IF	CITATIONS
73	Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Bioorganic and Medicinal Chemistry, 2011, 19, 5071-5078.	3.0	45
74	The Role of the Formamide/Zirconia System in the Synthesis of Nucleobases and Biogenic Carboxylic Acid Derivatives. Journal of Molecular Evolution, 2010, 71, 100-110.	1.8	36
75	An Efficient and Selective Epoxidation of Olefins with Novel Methyltrioxorhenium/(Fluorous) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf
76	Oxidative functionalisation of lignin by layer-by-layer immobilised laccases and laccase microcapsules. Applied Catalysis A: General, 2010, 372, 115-123.	4.3	45
77	Lignin behaviour during wood liquefactionâ€"Characterization by quantitative 31P, 13C NMR and size-exclusion chromatography. Catalysis Today, 2010, 156, 23-30.	4.4	52
78	Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catalysis Today, 2010, 156, 8-22.	4.4	193
79	Hydrolysis efficiency and enzyme adsorption on steam-pretreated spruce in the presence of poly(ethylene glycol). Enzyme and Microbial Technology, 2010, 47, 84-90.	3.2	56
80	Borate Minerals and RNA Stability. Polymers, 2010, 2, 211-228.	4.5	17
81	Role of clays in the prebiotic synthesis of sugar derivatives from formamide. Philosophical Magazine, 2010, 90, 2329-2337.	1.6	20
82	Characterisation of archaeological wood: A case study on the deterioration of a coffin. Microchemical Journal, 2009, 92, 150-154.	4.5	24
83	A novel and efficient synthesis of highly oxidized lignans by a methyltrioxorhenium/hydrogen peroxide catalytic system. Studies on their apoptogenic and antioxidant activity. Bioorganic and Medicinal Chemistry, 2009, 17, 5676-5682.	3.0	18
84	A novel and efficient catalytic epoxidation of monoterpenes by homogeneous and heterogeneous methyltrioxorhenium in ionic liquids. Applied Catalysis A: General, 2009, 360, 171-176.	4.3	33
85	Efficient oxidation of thiophene derivatives with homogeneous and heterogeneous MTO/H2O2 systems: A novel approach for, oxidative desulfurization (ODS) of diesel fuel. Applied Catalysis B: Environmental, 2009, 89, 239-245.	20.2	85
86	From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Research in Microbiology, 2009, 160, 441-448.	2.1	61
87	A Novel and Efficient Synthesis of Tocopheryl Quinones by Homogeneous and Heterogeneous Methyltrioxorhenium/Hydrogen Peroxide Catalytic Systems. Advanced Synthesis and Catalysis, 2008, 350, 321-331.	4.3	24
88	Ionic liquids in methyltrioxorhenium catalyzed epoxidation–methanolysis of glycals under homogeneous and heterogeneous conditions. Journal of Molecular Catalysis A, 2008, 284, 108-115.	4.8	13
89	A novel and efficient catalytic epoxidation of olefins with adducts derived from methyltrioxorhenium and chiral aliphatic amines. Journal of Catalysis, 2008, 257, 262-269.	6.2	20
90	Synthesis and Degradation of Nucleic Acid Components by Formamide and Iron Sulfur Minerals. Journal of the American Chemical Society, 2008, 130, 15512-15518.	13.7	81

#	Article	IF	CITATIONS
91	Molecular Complexity Favors the Evolution of Ribopolymers. Biochemistry, 2008, 47, 2732-2742.	2.5	20
92	Advances and Challenges in the Synthesis of Highly Oxidised Natural Phenols with Antiviral, Antioxidant and Cytotoxic Activities. Current Medicinal Chemistry, 2008, 15, 1500-1519.	2.4	28
93	Nucleoside Phosphorylation by Phosphate Minerals. Journal of Biological Chemistry, 2007, 282, 16729-16735.	3.4	110
94	Origin of Informational Polymers and the Search for Non-Terran Life: Protection of the Polymeric State of DNA by Phosphate Minerals. Astrobiology, 2007, 7, 616-630.	3.0	8
95	An Efficient and Stereoselective Dearylation of Asarinin and Sesamin Tetrahydrofurofuran Lignans to Acuminatolide by Methyltrioxorhenium/H2O2 and UHP Systems. Journal of Natural Products, 2007, 70, 39-42.	3.0	14
96	Formamide Chemistry and the Origin of Informational Polymers. Chemistry and Biodiversity, 2007, 4, 694-720.	2.1	118
97	Archaeological wood characterisation by PY/GC/MS, GC/MS, NMR and GPC techniques. Microchemical Journal, 2007, 85, 164-173.	4.5	72
98	On the propensity of lignin to associate: A size exclusion chromatography study with lignin derivatives isolated from different plant species. Phytochemistry, 2007, 68, 2570-2583.	2.9	88
99	Formamide as the main building block in the origin of nucleic acids. BMC Evolutionary Biology, 2007, 7, S1.	3.2	79
100	Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorganic and Medicinal Chemistry, 2006, 14, 5292-5302.	3.0	127
101	Efficient and selective oxidation of methyl substituted cycloalkanes by heterogeneous methyltrioxorhenium–hydrogen peroxide systems. Tetrahedron, 2006, 62, 12326-12333.	1.9	29
102	About a Formamide-Based Origin of Informational Polymers: Syntheses of Nucleobases and Favourable Thermodynamic Niches for Early Polymers. Origins of Life and Evolution of Biospheres, 2006, 36, 523-531.	1.9	33
103	Catalytic MTO-based C–H insertion reactions of hydrogen peroxide: an investigation on the polymeric support role in heterogeneous conditions. Topics in Catalysis, 2006, 40, 221-227.	2.8	27
104	Origin of Informational Polymers: The Concurrent Roles of Formamide and Phosphates. ChemBioChem, 2006, 7, 1707-1714.	2.6	56
105	Methyltrioxorhenium-Catalyzed Epoxidation-Methanolysis of Glycals under Homogeneous and Heterogeneous Conditions. Advanced Synthesis and Catalysis, 2006, 348, 476-486.	4.3	30
106	Origin of Informational Polymers. Journal of Biological Chemistry, 2006, 281, 5790-5796.	3.4	45
107	Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. Bioorganic and Medicinal Chemistry, 2005, 13, 2569-2578.	3.0	109
108	A novel and efficient catalytic epoxidation of olefins and monoterpenes with microencapsulated Lewis base adducts of methyltrioxorhenium. Tetrahedron, 2005, 61, 1069-1075.	1.9	47

#	Article	IF	Citations
109	Synthesis and Degradation of Nucleic Acid Components by Formamide and Cosmic Dust Analogues. ChemBioChem, 2005, 6, 1368-1374.	2.6	64
110	Origin of Informational Polymers. Journal of Biological Chemistry, 2005, 280, 35658-35669.	3.4	25
111	Advances in the Prebiotic Synthesis of Nucleic Acids Bases: Implications for the Origin of Life. Current Organic Chemistry, 2004, 8, 1425-1443.	1.6	83
112	Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. Journal of Molecular Catalysis A, 2004, 208, 195-202.	4.8	86
113	The Immobilized Porphyrin-Mediator System Mn(TMePyP)/clay/HBT (clay-PMS): A Lignin Peroxidase Biomimetic Catalyst in the Oxidation of Lignin and Lignin Model Compounds. European Journal of Inorganic Chemistry, 2004, 2004, 4477-4483.	2.0	32
114	Synthesis and Degradation of Nucleobases and Nucleic Acids by Formamide in the Presence of Montmorillonites. ChemBioChem, 2004, 5, 1558-1566.	2.6	87
115	Oxidation of adenine and adenosine derivatives by dimethyldioxirane (DMDO) using halogenated metalloporphyrins as catalysts. Journal of Molecular Catalysis A, 2004, 214, 219-225.	4.8	3
116	A Novel Synthesis of Biomolecular Precursors. , 2004, , 393-413.		6
117	On the Mechanism of the Laccase–Mediator System in the Oxidation of Lignin. Chemistry - A European Journal, 2003, 9, 5371-5378.	3.3	81
118	One-Pot TiO2-Catalyzed Synthesis of Nucleic Bases and Acyclonucleosides from Formamide: Implications for the Origin of Life. ChemBioChem, 2003, 4, 514-521.	2.6	122
119	Metalloporphyrins in the Biomimetic Oxidation of Lignin and Lignin Model Compounds: Development of Alternative Delignification Strategies., 2003,, 161-203.		2
120	Manganese and iron tetraphenylporphyrin-catalyzed oxidation of a cardanol derivative (hydrogenated) Tj ETQq0	0 0 rgBT /0	Overlock 10
121	A Biomimetic Approach to Lignin Degradation. ACS Symposium Series, 2001, , 212-225.	0.5	4
122	Synthesis, Biological Evaluation, and Pharmacophore Generation of Uracil, 4(3H)-Pyrimidinone, and Uridine Derivatives as Potent and Selective Inhibitors of Parainfluenza 1 (Sendai) Virus. Journal of Medicinal Chemistry, 2001, 44, 4554-4562.	6.4	50
123	A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide implications for the origin of life. Bioorganic and Medicinal Chemistry, 2001, 9, 1249-1253.	3.0	187
124	Oxidation of unsaturated monoterpenes with hydrogen peroxide catalysed by manganese(III) porphyrin complexes. Journal of Molecular Catalysis A, 2001, 172, 33-42.	4.8	68
125	On the Role of 1-Hydroxybenzotriazole as Mediator in Laccase Oxidation of Residual Kraft Lignin. ACS Symposium Series, 2001, , 373-390.	0.5	4
126	Selective Oxidation of Uracil and Adenine Derivatives by the Catalytic System MeReO3/H2O2 and MeReO3/Urea Hydrogen Peroxide. Tetrahedron, 2000, 56, 10031-10037.	1.9	37

#	Article	IF	Citations
127	The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes. Bioorganic and Medicinal Chemistry, 2000, 8, 433-438.	3.0	21
128	Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorganic and Medicinal Chemistry, 1999, 7, 1897-1905.	3.0	62
129	Umpolung of Reactivity of Lithium Trimethylsilyldiazomethane at the C-5 Position of 6-Substituted Uracil Derivatives. European Journal of Organic Chemistry, 1999, 1999, 2751-2755.	2.4	6
130	19F Nuclear Magnetic Resonance Spectroscopy for the Quantitative Detection and Classification of Carbonyl Groups in Lignins. Journal of Agricultural and Food Chemistry, 1999, 47, 190-201.	5.2	36
131	Manganese Tetraphenylporphyrin-Catalyzed Stereoselective Epoxidation of Thymidine Nucleosides. Journal of Organic Chemistry, 1999, 64, 5361-5365.	3.2	13
132	Manganese Tetraphenylporphyrins Catalyzed Selective Oxidation of Purine Derivatives. Nucleosides & Nucleotides, 1999, 18, 1123-1124.	0.5	4
133	The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorganic and Medicinal Chemistry, 1998, 6, 2161-2169.	3.0	127
134	A potent and selective inhibition of parainfluenza 1 (Sendai) virus by new 6-oxiranyl-, 6-methyloxiranyluracils, and 4(3H)-pyrimidinone derivatives. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1833-1838.	2.2	14
135	Structural modifications induced during biodegradation of wheat lignin by Lentinula edodes. Bioorganic and Medicinal Chemistry, 1998, 6, 967-973.	3.0	42
136	The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus. Journal of Biotechnology, 1998, 61, 209-218.	3.8	102
137	Structural Analysis of Wheat Straw Lignin by Quantitative31P and 2D NMR Spectroscopy. The Occurrence of Ester Bonds and α-O-4 Substructures. Journal of Agricultural and Food Chemistry, 1997, 45, 1212-1219.	5.2	224
138	Singlet oxygen in the photodegradation of lignin models. Tetrahedron, 1997, 53, 7877-7888.	1.9	94
139	Mechanism of degradation of 2′-deoxycytidine by formamide: Implications for chemical DNA sequencing procedures. Bioorganic and Medicinal Chemistry, 1997, 5, 2041-2048.	3.0	22
140	Reactivity of lithium trimethylsilyldiazomethane and diazomethane toward the 5,6-double bond of uracil and uridine derivatives. Tetrahedron, 1997, 53, 7045-7056.	1.9	25
141	An unexpected and efficient direct nucleophilic C-4 hydroxy substitution on 2-methoxy- and 2-methylthio-4(3)-pyrimidinones bearing a diethylamino moiety on the C-6 side chain. Tetrahedron Letters, 1997, 38, 8249-8252.	1.4	9
142	Veratryl alcohol oxidation by manganese-dependent peroxidase from Lentinus edodes. Journal of Biotechnology, 1996, 48, 231-239.	3.8	35
143	Mechanism of Degradation of Purine Nucleosides by Formamide. Implications for Chemical DNA Sequencing Proceduresâ€. Journal of the American Chemical Society, 1996, 118, 5615-5619.	13.7	43
144	Ozonation of Thioamide Containing Heterocycles. A New General and Selective Procedure for the Synthesis of C-2 Substituted Heteroazole Derivatives. Synthetic Communications, 1996, 26, 3241-3251.	2.1	5

#	Article	IF	CITATIONS
145	Transformations of thiopyrimidine and thiopurine nucleosides following oxidation with dimethyldioxirane. Tetrahedron, 1996, 52, 6759-6780.	1.9	29
146	Production and isolation of chitosan by submerged and solid-state fermentation fromLentinus edodes. Biotechnology and Bioengineering, 1996, 50, 207-210.	3.3	90
147	Photodegradation of lignin: the role of singlet oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 101, 69-73.	3.9	48
148	Aqueous plant extracts as stimulators of laccase production in liquid cultures of Lentinus edodes. Biotechnology Letters, 1996, 10, 243.	0.5	24
149	Biodegradation of Monomeric, Dimeric and Polymeric Lignin Models byLentinus edodes. Holzforschung, 1996, 50, 193-200.	1.9	5
150	Studies on the chemistry of pyrimidine derivatives with dimethyldioxirane: synthesis, cytotoxic effect and antiviral activity of new 5,6-oxiranyl-5,6-dihydro and 5-hydroxy-5,6-dihydro-6-substituted uracil derivatives and pyrimidine nucleosides. Tetrahedron, 1995, 51, 7561-7578.	1.9	29
151	Ozonation of thionucleosides. A new chemical transformation of 4-thiouracil and 6-thioguanine nucleosides to cytosine and adenosine counterparts. Tetrahedron, 1995, 51, 3607-3616.	1.9	18
152	A new and efficient synthesis of 8-hydroxypurine derivatives by dimethyldioxirane oxidation. Tetrahedron Letters, 1995, 36, 2665-2668.	1.4	28
153	Aromatic ring oxidation of vanillyl and veratryl alcohols by Lentinus edodes: possible artifacts in the lignin peroxidase and veratryl alcohol oxidase assays. Journal of Biotechnology, 1995, 39, 175-179.	3.8	12
154	Oxidation and aromatic ring cleavage of 4-methoxy and 3,4-dimethoxycennamic acid by Lentinus edodes. Biotechnology Letters, 1994, 16, 995-1000.	2.2	17
155	A New Efficient and Mild Synthesis of 2-Sxindoles by One-Pot Wolff-Kishner Like Reduction of Isatin Derivatives. Synthetic Communications, 1994, 24, 2835-2841.	2.1	76
156	A new and efficient synthesis of cytidine and adenosine derivatives by dimethyldioxirane oxidation of thiopyrimidine and thiopurine nucleosides. Journal of the Chemical Society Perkin Transactions 1, 1994, , 3053.	0.9	14
157	Ozonation of substituted 2-thiouracils and pyrimidine-2-thione. Tetrahedron Letters, 1993, 34, 1631-1634.	1.4	16
158	Dimethyldioxirane oxidations: A new and efficient desulfurization of thiopyrimidine and thiopurine nucleosides Tetrahedron Letters, 1993, 34, 7785-7788.	1.4	16
159	On the Prebiotic Synthesis of Nucleobases, Nucleotides, Oligonucleotides, Pre-RNA and Pre-DNA Molecules. , 0, , 29-68.		39