Hendrik Poorter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2346724/publications.pdf

Version: 2024-02-01

120 papers

43,229 citations

68 h-index 20358 116 g-index

127 all docs

127 docs citations

times ranked

127

28779 citing authors

#	Article	IF	CITATIONS
1	A metaâ€analysis of responses of C ₃ plants to atmospheric CO ₂ : dose–response curves for 85 traits ranging from the molecular to the wholeâ€plant level. New Phytologist, 2022, 233, 1560-1596.	7.3	55
2	MetaPhenomics: quantifying the many ways plants respond to their abiotic environment, using light intensity as an example. Plant and Soil, 2022, 476, 421-454.	3.7	1
3	Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 2021, 232, 1123-1158.	7.3	277
4	Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. New Phytologist, 2021, 229, 308-322.	7.3	43
5	Dividing the pie: A quantitative review on plant density responses. Plant, Cell and Environment, 2021, 44, 1072-1094.	5.7	67
6	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
7	Applying the economic concept of profitability to leaves. Scientific Reports, 2021, 11, 49.	3.3	7
8	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	5.2	22
9	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	7.8	62
10	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	7. 3	153
11	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	7. 3	216
12	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
13	The analysis of plant root responses to nutrient concentration, soil volume and neighbour presence: Different statistical approaches reflect different underlying basic questions. Functional Ecology, 2020, 34, 2210-2217.	3.6	12
14	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	7. 3	84
15	Association of Shoot and Root Responses to Water Deficit in Young Faba Bean (Vicia faba L.) Plants. Frontiers in Plant Science, 2019, 10, 1063.	3.6	15
16	How Does Water Availability Affect the Allocation to Bark in a Mediterranean Conifer?. Frontiers in Plant Science, 2019, 10, 607.	3.6	14
17	A metaâ€analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 2019, 223, 1073-1105.	7.3	307
18	Root traits of herbaceous crops: Preâ€adaptation to cultivation or evolution under domestication?. Functional Ecology, 2019, 33, 273-285.	3.6	29

#	Article	IF	CITATIONS
19	How are nitrogen availability, fineâ€root mass, and nitrogen uptake related empirically? Implications for models and theory. Global Change Biology, 2019, 25, 885-899.	9.5	22
20	Computational aspects underlying genome to phenome analysis in plants. Plant Journal, 2019, 97, 182-198.	5.7	50
21	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
22	Coming Late for Dinner: Localized Digestate Depot Fertilization for Extensive Cultivation of Marginal Soil With Sida hermaphrodita. Frontiers in Plant Science, 2018, 9, 1095.	3.6	19
23	Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 2017, 214, 1447-1463.	7.3	412
24	The anatomical and compositional basis of leaf mass per area. Ecology Letters, 2017, 20, 412-425.	6.4	139
25	Photosynthesis: ancient, essential, complex, diverse … and in need of improvement in a changing world. New Phytologist, 2017, 213, 43-47.	7.3	30
26	Building a better foundation: improving rootâ€trait measurements to understand and model plant and ecosystem processes. New Phytologist, 2017, 215, 27-37.	7.3	159
27	Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass and Bioenergy, 2017, 107, 207-213.	5.7	41
28	Growth and Growth-Related Traits for a Range of Quercus Species Grown as Seedlings Under Controlled Conditions and for Adult Plants from the Field. Tree Physiology, 2017, , 393-417.	2.5	9
29	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	4.0	114
30	Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. Frontiers in Plant Science, 2017, 8, 900.	3.6	61
31	Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLoS ONE, 2016, 11, e0148788.	2.5	177
32	Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods, 2016, 12, 44.	4.3	109
33	Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytologist, 2016, 212, 838-855.	7. 3	397
34	Energizing marginal soils – The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass and Bioenergy, 2016, 87, 9-16.	5.7	64
35	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	27.8	655
36	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022

3

#	Article	IF	Citations
37	The Importance of Being First: Exploring Priority and Diversity Effects in a Grassland Field Experiment. Frontiers in Plant Science, 2016, 7, 2008.	3 . 6	37
38	The limits to leaf and root plasticity: what is so special about specific root length? New Phytologist, 2015, 206, 1188-1190.	7.3	64
39	Corrections for rooting volume and plant size reveal negative effects of neighbour presence on root allocation in pea. Functional Ecology, 2015, 29, 1383-1391.	3 . 6	48
40	How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 2015, 208, 736-749.	7.3	239
41	Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014). Journal of Experimental Botany, 2014, 65, 5115-5123.	4.8	26
42	The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance. Frontiers in Plant Science, 2014, 5, 12.	3.6	30
43	Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13721-13726.	7.1	249
44	Trait correlation networks: a wholeâ€plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 2014, 201, 378-382.	7.3	131
45	The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 2014, 17, 1351-1364.	6.4	802
46	Variation in biomass expansion factors for China's forests in relation to forest type, climate, and stand development. Annals of Forest Science, 2013, 70, 589-599.	2.0	21
47	Physiological mechanisms in plant growth models: do we need a supraâ€eellular systems biology approach?. Plant, Cell and Environment, 2013, 36, 1673-1690.	5.7	79
48	Exploring variation in leaf mass per area (LMA) from leaf to cell: An anatomical analysis of 26 woody species. American Journal of Botany, 2013, 100, 1969-1980.	1.7	96
49	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.6	2,818
50	How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 2013, 64, 4053-4080.	4.8	171
51	Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.	2.7	84
52	Resource limitation, tolerance, and the future of ecological plant classification. Frontiers in Plant Science, 2012, 3, 246.	3.6	45
53	Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants. Frontiers in Plant Science, 2012, 3, 259.	3.6	113
54	Plasticity as a plastic response: how submergenceâ€induced leaf elongation in <i>Rumex palustris</i> depends on light and nutrient availability in its early life stage. New Phytologist, 2012, 194, 572-582.	7.3	50

#	Article	IF	CITATIONS
55	The art of growing plants for experimental purposes: a practical guide for the plant biologist. Functional Plant Biology, 2012, 39, 821.	2.1	217
56	Phenotyping plants: genes, phenes and machines. Functional Plant Biology, 2012, 39, 813.	2.1	106
57	Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 2012, 39, 839.	2.1	578
58	Biomass allocation to leaves, stems and roots: metaâ€analyses of interspecific variation and environmental control. New Phytologist, 2012, 193, 30-50.	7.3	2,012
59	Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.	8.7	36
60	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
61	Using log–log scaling slope analysis for determining the contributions to variability in biological variables such as leaf mass per area: why it works, when it works and how it can be extended. New Phytologist, 2011, 190, 5-8.	7.3	21
62	Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress. Tree Physiology, 2011, 31, 92-101.	3.1	11
63	Endogenous Abscisic Acid as a Key Switch for Natural Variation in Flooding-Induced Shoot Elongation Â. Plant Physiology, 2010, 154, 969-977.	4.8	50
64	A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany, 2010, 61, 2043-2055.	4.8	151
65	Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 2010, 61, 3107-3117.	4.8	679
66	Intraspecific variation in the magnitude and pattern of flooding-induced shoot elongation in Rumex palustris. Annals of Botany, 2009, 104, 1057-1067.	2.9	33
67	Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computerâ€readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy. Plant, Cell and Environment, 2009, 32, 1185-1200.	5.7	42
68	Interactive effects of water table and precipitation on net CO ₂ assimilation of three coâ€occurring <i>Sphagnum</i> mosses differing in distribution above the water table. Global Change Biology, 2009, 15, 680-691.	9.5	104
69	Causes and consequences of variation in leaf mass per area (LMA): a metaâ€analysis. New Phytologist, 2009, 182, 565-588.	7.3	2,056
70	Carbon balance of the oldest and mostâ€shaded leaves in a vegetation: a litmus test for canopy models. New Phytologist, 2009, 183, 1-3.	7.3	10
71	Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in <i>Arabidopsis</i> rosettes to a progressive decrease of temperature in the nonâ€freezing range. Plant, Cell and Environment, 2008, 31, 518-547.	5.7	191
72	The role of ethylene perception in the control of photosynthesis. Plant Signaling and Behavior, 2008, 3, 108-109.	2.4	27

#	Article	IF	CITATIONS
73	Ethylene Insensitivity Results in Down-Regulation of Rubisco Expression and Photosynthetic Capacity in Tobacco. Plant Physiology, 2007, 144, 1305-1315.	4.8	70
74	No evidence for substantial aerobic methane emission by terrestrial plants: a 13 C″abelling approach. New Phytologist, 2007, 175, 29-35.	7.3	158
75	Ecological Significance of Inherent Variation in Relative Growth Rate and Its Components. , 2007, , 67-100.		96
76	Ecological Significance of Inherent Variation in Relative Growth Rate and Its Components. Books in Soils, Plants, and the Environment, 2007, , .	0.1	3
77	The Janus face of ethylene: growth inhibition and stimulation. Trends in Plant Science, 2006, 11, 176-183.	8.8	398
78	Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant, Cell and Environment, 2006, 29, 1629-1643.	5.7	117
79	Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany, 2006, 57, 355-371.	4.8	181
80	Ethylene and Plant Growth. , 2006, , 35-49.		1
81	Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.	7.3	1,704
82	Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14, 411-421.	5 . 8	669
83	A genetic analysis of relative growth rate and underlying components in Hordeum spontaneum. Oecologia, 2005, 142, 360-377.	2.0	42
84	Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Annals of Botany, 2005, 96, 1129-1136.	2.9	374
85	Ethylene Insensitivity Does Not Increase Leaf Area or Relative Growth Rate in Arabidopsis, Nicotiana tabacum, and Petunia x hybrida. Plant Physiology, 2004, 134, 1803-1812.	4.8	70
86	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	27.8	6,489
87	Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. Advances in Ecological Research, 2004, , 283-362.	2.7	280
88	Plant growth and competition at elevated CO 2: on winners, losers and functional groups. New Phytologist, 2003, 157, 175-198.	7.3	522
89	A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51, 335.	0.6	3,071
90	Avoiding Bias in Calculations of Relative Growth Rate. Annals of Botany, 2002, 90, 37-42.	2.9	462

#	Article	IF	CITATIONS
91	The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia, 2001, 129, 1-20.	2.0	188
92	Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 2001, 24, 755-767.	5.7	945
93	Growth characteristics in Hordeum spontaneum populations from different habitats. New Phytologist, 2000, 146, 471-481.	7.3	37
94	The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Functional Plant Biology, 2000, 27, 595.	2.1	204
95	The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Functional Plant Biology, 2000, 27, 1191.	2.1	690
96	A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist, 1999, 143, 163-176.	7.3	297
97	Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytologist, 1999, 143, 201-211.	7.3	140
98	Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 1998, 116, 26-37.	2.0	476
99	Interactive effects of growth-limiting N supply and elevated atmospheric CO2 concentration on growth and carbon balance of Plantago major. Physiologia Plantarum, 1998, 103, 451-460.	5.2	22
100	Do slowâ€growing species and nutrientâ€stressed plants respond relatively strongly to elevated CO 2 ?. Global Change Biology, 1998, 4, 693-697.	9.5	101
101	The Fate of Acquired Carbon in Plants: Chemical Composition and Construction Costs., 1997,, 39-72.		170
102	Plant growth analysis: an evaluation of experimental design and computational methods. Journal of Experimental Botany, 1996, 47, 1343-1351.	4.8	83
103	The effects of nutrient fertilization on growth, biomass allocation, and anatomy of maize plants. Journal of Biological Education, 1996, 30, 67-72.	1.5	1
104	Interspecific Variation in the Growth Response of Plants to Elevated CO2: A Search for Functional Types., 1996,, 375-412.		148
105	Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant and Soil, 1995, 171, 217-227.	3.7	84
106	Differential chemical allocation and plant adaptation: A Py-MS Study of 24 species differing in relative growth rate. Plant and Soil, 1995, 175, 275-289.	3.7	19
107	Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Plant Ecology, 1993, 104-105, 77-97.	1.2	586
108	Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration., 1993,,77-98.		204

#	Article	lF	CITATIONS
109	Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences. Advances in Ecological Research, 1992, , 187-261.	2.7	956
110	Differences in relative growth rate in 11 grasses correlate with differences in chemical composition as determined by pyrolysis mass spectrometry. Oecologia, 1992, 89, 567-573.	2.0	68
111	Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on ontogeny. New Phytologist, 1992, 120, 159-166.	7.3	88
112	Is Interspecific Variation in Relative Growth Rate Positively Correlated with Biomass Allocation to the Leaves?. American Naturalist, 1991, 138, 1264-1268.	2.1	36
113	Respiratory energy requirements of roots vary with the potential growth rate of a plant species. Physiologia Plantarum, 1991, 83, 469-475.	5.2	183
114	Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 1990, 83, 553-559.	2.0	880
115	Carbon and Nitrogen Economy of 24 Wild Species Differing in Relative Growth Rate. Plant Physiology, 1990, 94, 621-627.	4.8	540
116	Plant growth analysis: towards a synthesis of the classical and the functional approach. Physiologia Plantarum, 1989, 75, 237-244.	5.2	146
117	The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration of Plantago major. Physiologia Plantarum, 1988, 73, 553-559.	5.2	135
118	Growth and competitive ability of a highly plastic and a marginally plastic genotype of Plantago major in a fluctuating environment. Physiologia Plantarum, 1986, 67, 217-222.	5.2	44
119	Testing differences in relative growth rate: A method avoiding curve fitting and pairing. Physiologia Plantarum, 1986, 67, 223-226.	5.2	139
120	Growth and root nodule nitrogenase activity of Pisum sativum as influenced by transpiration. Physiologia Plantarum, 1984, 61, 637-642.	5.2	16