
Leo P Singer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345942/publications.pdf Version: 2024-02-01

LEO P SINCEP

#	Article	IF	CITATIONS
1	Astropy: A community Python package for astronomy. Astronomy and Astrophysics, 2013, 558, A33.	5.1	8,416
2	The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package [*] . Astronomical Journal, 2018, 156, 123.	4.7	4,142
3	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	3.1	1,020
4	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
5	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
6	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	3.1	453
7	healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python. Journal of Open Source Software, 2019, 4, 1298.	4.6	450
8	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
9	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
10	<tt>astroquery</tt> : An Astronomical Web-querying Package in Python. Astronomical Journal, 2019, 157, 98.	4.7	405
11	A radio counterpart to a neutron star merger. Science, 2017, 358, 1579-1583.	12.6	390
12	A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature, 2018, 554, 207-210.	27.8	283
13	Rapid Bayesian position reconstruction for gravitational-wave transients. Physical Review D, 2016, 93, .	4.7	249
14	Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Physical Review D, 2017, 95, .	4.7	246
15	TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE. Astrophysical Journal, 2012, 748, 136.	4.5	200
16	THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. Astrophysical Journal, 2014, 795, 105.	4.5	159
17	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
18	A tidal disruption event coincident with a high-energy neutrino. Nature Astronomy, 2021, 5, 510-518.	10.1	136

LEO P SINGER

#	Article	IF	CITATIONS
19	GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP. Astrophysical Journal Letters, 2016, 829, L15.	8.3	126
20	PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA. Astrophysical Journal, 2015, 804, 114.	4.5	117
21	The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy. Publications of the Astronomical Society of the Pacific, 2019, 131, 038003.	3.1	112
22	GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES. Astrophysical Journal, 2016, 820, 136.	4.5	111
23	GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR. Astrophysical Journal Letters, 2019, 885, L19.	8.3	86
24	Machine Learning for the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 038002.	3.1	83
25	Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory. Astrophysical Journal Letters, 2017, 848, L33.	8.3	80
26	Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j. Nature Astronomy, 2021, 5, 46-53.	10.1	71
27	Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nature Astronomy, 2021, 5, 917-927.	10.1	69
28	Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3. Astrophysical Journal, 2020, 905, 145.	4.5	69
29	PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS. Astrophysical Journal, 2016, 825, 116.	4.5	68
30	Data-driven Expectations for Electromagnetic Counterpart Searches Based on LIGO/Virgo Public Alerts. Astrophysical Journal, 2022, 924, 54.	4.5	56
31	Enabling real-time multi-messenger astrophysics discoveries with deep learning. Nature Reviews Physics, 2019, 1, 600-608.	26.6	53
32	DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg ² : iPTF13bxl AND GRB 130702A. Astrophysical Journal Letters, 2013, 776, L34.	8.3	52
33	An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events. Astrophysical Journal Letters, 2020, 905, L25.	8.3	48
34	iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 824, L24.	8.3	46
35	THE NEEDLE IN THE 100 deg ² HAYSTACK: UNCOVERING AFTERGLOWS OF <i>FERMI</i> GRBs WITH THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2015, 806, 52.	4.5	43
36	Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate. Astrophysical Journal, 2021, 918, 63.	4.5	42

LEO P SINGER

#	Article	IF	CITATIONS
37	SUPPLEMENT: "GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP―(2016, ApJL, 829, L15). Astrophysical Journal, Supplement Series, 2016, 226, 10.	7.7	41
38	Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters, 2022, 128, .	7.8	41
39	GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam. Astrophysical Journal Letters, 2019, 881, L7.	8.3	39
40	First Demonstration of Early Warning Gravitational-wave Alerts. Astrophysical Journal Letters, 2021, 910, L21.	8.3	33
41	GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate. Astrophysical Journal Letters, 2019, 881, L16.	8.3	30
42	A Tale of Two Transients: GW 170104 and GRBÂ170105A. Astrophysical Journal, 2017, 845, 152.	4.5	29
43	2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility. Publications of the Astronomical Society of the Pacific, 2019, 131, 048001.	3.1	27
44	ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at zÂâ‰^Â2.9 with No Detected Gamma-Ray Burst Counterpart. Astrophysical Journal, 2020, 905, 98.	4.5	24
45	iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger. Astrophysical Journal, 2017, 847, 54.	4.5	23
46	RADIO FOLLOW-UP OF GRAVITATIONAL-WAVE TRIGGERS DURING ADVANCED LIGO O1. Astrophysical Journal Letters, 2016, 829, L28.	8.3	21
47	Sub-threshold Binary Neutron Star Search in Advanced LIGO's First Observing Run. Astrophysical Journal Letters, 2019, 878, L17.	8.3	21
48	Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 260, 18.	7.7	21
49	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
50	A Strategy for LSST to Unveil a Population of Kilonovae without Gravitational-wave Triggers. Publications of the Astronomical Society of the Pacific, 2019, 131, 068004.	3.1	19
51	Optimizing serendipitous detections of kilonovae: cadence and filter selection. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2822-2831.	4.4	16
52	Localization of binary black hole mergers with known inclination. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4459-4463.	4.4	14
53	Optimizing Cadences with Realistic Light-curve Filtering for Serendipitous Kilonova Discovery with Vera Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 258, 5.	7.7	12
54	Dynamic scheduling: target of opportunity observations of gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4366-4371.	4.4	11

LEO P SINGER

#	ARTICLE	IF	CITATIONS
55	The JAGWAR Prowls LIGO/Virgo O3 Paper I: Radio Search of a Possible Multimessenger Counterpart of the Binary Black Hole Merger Candidate S191216ap. Astrophysical Journal, 2021, 911, 77.	4.5	9
56	A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226. Astrophysical Journal, 2018, 857, 143.	4.5	7
57	DECAM-GROWTH SEARCH FOR THE FAINT AND DISTANT BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS IN O3A. Revista Mexicana De AstronomÃa Y AstrofÃsica Serie De Conferencias, 0, 53, 91-99.	0.2	4
58	Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework. I. Nondetection Methodology and Single-event Analyses. Astrophysical Journal, 2022, 925, 58.	4.5	3
59	In Search of Short Gamma-Ray Burst Optical Counterparts with the Zwicky Transient Facility. Astrophysical Journal, 2022, 932, 40.	4.5	3
60	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
61	HEALPix Alchemy: Fast All-Sky Geometry and Image Arithmetic in a Relational Database for Multimessenger Astronomy Brokers. Astronomical Journal, 2022, 163, 209.	4.7	2
62	The NASA Multi-Messenger Astrophysics Science Support Center (MOSSAIC). Astronomy and Computing, 2022, 40, 100582.	1.7	1
63	Multiresolution HEALPix Maps for Multiwavelength and Multimessenger Astronomy. Astronomical Journal, 2022, 163, 259.	4.7	1