
Alicia Izquierdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency. Journal of Neuroscience, 2004, 24, 7540-7548.	3.6	534
2	The neural basis of reversal learning: An updated perspective. Neuroscience, 2017, 345, 12-26.	2.3	435
3	Brief Uncontrollable Stress Causes Dendritic Retraction in Infralimbic Cortex and Resistance to Fear Extinction in Mice. Journal of Neuroscience, 2006, 26, 5733-5738.	3.6	406
4	Impaired Stress-Coping and Fear Extinction and Abnormal Corticolimbic Morphology in Serotonin Transporter Knock-Out Mice. Journal of Neuroscience, 2007, 27, 684-691.	3.6	333
5	Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 2012, 219, 607-620.	3.1	257
6	The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews, 2015, 57, 271-283.	6.1	239
7	Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making. Journal of Neuroscience, 2017, 37, 10529-10540.	3.6	213
8	Comparison of the Effects of Bilateral Orbital Prefrontal Cortex Lesions and Amygdala Lesions on Emotional Responses in Rhesus Monkeys. Journal of Neuroscience, 2005, 25, 8534-8542.	3.6	178
9	Pharmacological or Genetic Inactivation of the Serotonin Transporter Improves Reversal Learning in Mice. Cerebral Cortex, 2010, 20, 1955-1963.	2.9	167
10	Adaptive learning under expected and unexpected uncertainty. Nature Reviews Neuroscience, 2019, 20, 635-644.	10.2	162
11	Combined Unilateral Lesions of the Amygdala and Orbital Prefrontal Cortex Impair Affective Processing in Rhesus Monkeys. Journal of Neurophysiology, 2004, 91, 2023-2039.	1.8	147
12	Orbitofrontal Cortex and Amygdala Contributions to Affect and Action in Primates. Annals of the New York Academy of Sciences, 2007, 1121, 273-296.	3.8	135
13	Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behavioural Brain Research, 2006, 171, 181-188.	2.2	116
14	Selective Bilateral Amygdala Lesions in Rhesus Monkeys Fail to Disrupt Object Reversal Learning. Journal of Neuroscience, 2007, 27, 1054-1062.	3.6	108
15	Reversal-Specific Learning Impairments After a Binge Regimen of Methamphetamine in Rats: Possible Involvement of Striatal Dopamine. Neuropsychopharmacology, 2010, 35, 505-514.	5.4	90
16	Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 2005, 22, 2341-2346.	2.6	89
17	Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder?. Neuropharmacology, 2012, 62, 1263-1272.	4.1	74
18	Functional Interaction of Medial Mediodorsal Thalamic Nucleus But Not Nucleus Accumbens with Amygdala and Orbital Prefrontal Cortex Is Essential for Adaptive Response Selection after Reinforcer Devaluation. Journal of Neuroscience, 2010, 30, 661-669.	3.6	73

Alicia Izquierdo

#	Article	IF	CITATIONS
19	Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14128-14133.	7.1	70
20	Distinct contributions of the amygdala and hippocampus to fear expression. European Journal of Neuroscience, 2009, 30, 2327-2337.	2.6	60
21	Contributions of anterior cingulate cortex and basolateral amygdala to decision confidence and learning under uncertainty. Nature Communications, 2019, 10, 4704.	12.8	57
22	Basolateral Amygdala Lesions Facilitate Reward Choices after Negative Feedback in Rats. Journal of Neuroscience, 2013, 33, 4105-4109.	3.6	55
23	Chemogenetic Modulation and Single-Photon Calcium Imaging in Anterior Cingulate Cortex Reveal a Mechanism for Effort-Based Decisions. Journal of Neuroscience, 2020, 40, 5628-5643.	3.6	46
24	Impaired reward learning and intact motivation after serotonin depletion in rats. Behavioural Brain Research, 2012, 233, 494-499.	2.2	44
25	Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option. European Journal of Neuroscience, 2017, 46, 1682-1688.	2.6	40
26	Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty. ELife, 2017, 6, .	6.0	37
27	Orbitofrontal cortex and basolateral amygdala lesions result in suboptimal and dissociable reward choices on cue-guided effort in rats Behavioral Neuroscience, 2011, 125, 350-359.	1.2	30
28	Comparison of single-dose and extended methamphetamine administration on reversal learning in rats. Psychopharmacology, 2012, 224, 459-467.	3.1	27
29	Foraging with the frontal cortex: A cross-species evaluation of reward-guided behavior. Neuropsychopharmacology, 2022, 47, 134-146.	5.4	26
30	Long-term effects of exposure to methamphetamine in adolescent rats. Drug and Alcohol Dependence, 2014, 138, 17-23.	3.2	23
31	Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats. Behavioural Brain Research, 2016, 308, 104-114.	2.2	21
32	Sex-dependent effects of chronic intermittent voluntary alcohol consumption on attentional, not motivational, measures during probabilistic learning and reversal. PLoS ONE, 2020, 15, e0234729.	2.5	21
33	Translational opportunities in animal and human models to study alcohol use disorder. Translational Psychiatry, 2021, 11, 496.	4.8	20
34	Basolateral amygdala supports the maintenance of value and effortful choice of a preferred option. European Journal of Neuroscience, 2017, 45, 388-397.	2.6	19
35	Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine. Behavioural Brain Research, 2014, 271, 195-202.	2.2	18
36	Reductions in Frontocortical Cytokine Levels are Associated with Long-Lasting Alterations in Reward Valuation after Methamphetamine. Neuropsychopharmacology, 2015, 40, 1234-1242.	5.4	18

Alicia Izquierdo

#	Article	IF	CITATIONS
37	Methamphetamine blocks exercise effects on Bdnf and Drd2 gene expression in frontal cortex and striatum. Neuropharmacology, 2015, 99, 658-664.	4.1	17
38	Persistent effect of withdrawal from intravenous methamphetamine self-administration on brain activation and behavioral economic indices involving an effort cost. Neuropharmacology, 2018, 140, 130-138.	4.1	17
39	Unique features of stimulus-based probabilistic reversal learning Behavioral Neuroscience, 2021, 135, 550-570.	1.2	17
40	Work aversion and associated changes in dopamine and serotonin transporter after methamphetamine exposure in rats. Psychopharmacology, 2012, 219, 411-420.	3.1	15
41	Distinct patterns of outcome valuation and amygdala-prefrontal cortex synaptic remodeling in adolescence and adulthood. Frontiers in Behavioral Neuroscience, 2015, 9, 115.	2.0	14
42	Rodent Models of Adaptive Decision Making. Methods in Molecular Biology, 2012, 829, 85-101.	0.9	13
43	Steep effort discounting of a preferred reward over a freely-available option in prolonged methamphetamine withdrawal in male rats. Psychopharmacology, 2017, 234, 2697-2705.	3.1	13
44	The orbitofrontal cortex in temporal cognition Behavioral Neuroscience, 2021, 135, 154-164.	1.2	12
45	Rodent Models of Adaptive Value Learning and Decision-Making. Methods in Molecular Biology, 2019, 2011, 105-119.	0.9	7
46	Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning. Frontiers in Neuroscience, 2015, 9, 155.	2.8	6
47	Quantity versus quality: Convergent findings in effort-based choice tasks. Behavioural Processes, 2019, 164, 178-185.	1.1	6
48	Rigid patterns of effortful choice behavior after acute stress in rats. Stress, 2017, 20, 36-45.	1.8	5
49	Hijacking translation in addiction. ELife, 2016, 5, .	6.0	1
50	Touchscreen response technology and the power of stimulusâ€based approaches in freely behaving animals. Genes, Brain and Behavior, 2021, 20, e12720.	2.2	0
51	Introducing <i>Oxford Open Neuroscience</i> ., 2022, 1, .		0