Xiangchao Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2345148/publications.pdf

Version: 2024-02-01

84171 76031 6,409 131 42 75 citations h-index g-index papers 131 131 131 8054 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. Journal of Molecular Catalysis A, 2016, 423, 533-549.	4.8	446
2	Recent development on MoS2-based photocatalysis: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 39-55.	5.6	404
3	Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnology Advances, 2018, 36, 182-195.	6.0	264
4	Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2013, 1, 12255.	5.2	220
5	Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials, 2021, 11, 1804.	1.9	192
6	MoS 2 quantum dots-interspersed Bi 2 WO 6 heterostructures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental, 2017, 210, 160-172.	10.8	177
7	Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & mp; interface. Applied Catalysis B: Environmental, 2020, 268, 118740.	10.8	173
8	Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnology Advances, 2010, 28, 910-918.	6.0	150
9	Applications of Photocatalytic Disinfection. International Journal of Photoenergy, 2010, 2010, 1-11.	1.4	146
10	Facile synthesis of BiOBr/Bi2WO6 heterojunction semiconductors with high visible-light-driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 310, 33-44.	2.0	143
11	Photocatalytic Applications of Two-Dimensional Ti ₃ C ₂ MXenes: A Review. ACS Applied Nano Materials, 2020, 3, 9581-9603.	2.4	142
12	Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 62-75.	5.6	140
13	In-situ construction of ternary Ti3C2 MXene@TiO2/Znln2S4 composites for highly efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 580, 669-680.	5.0	139
14	Synthesis and characterization of Ag/AgCl–activated carbon composites for enhanced visible light photocatalysis. Applied Catalysis B: Environmental, 2014, 144, 702-712.	10.8	126
15	A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 32-44.	2.0	124
16	Synthesis and characterization of a core–shell BiVO ₄ @g-C ₃ N ₄ photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Advances, 2017, 7, 8167-8177.	1.7	97
17	Advancements and future directions in enzyme technology for biomass conversion. Biotechnology Advances, 2012, 30, 913-919.	6.0	96
18	Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. Journal of Colloid and Interface Science, 2021, 583, 499-509.	5.0	87

#	Article	IF	Citations
19	Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 9087-9100.	3.8	85
20	HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Applied Catalysis A: General, 2007, 319, 25-37.	2.2	75
21	Few-layer MoS2 nanosheets-deposited on Bi2MoO6 microspheres: A Z-scheme visible-light photocatalyst with enhanced activity. Catalysis Today, 2018, 315, 67-78.	2.2	74
22	Pd-nanoparticle-decorated peanut-shaped BiVO4 with improved visible light-driven photocatalytic activity comparable to that of TiO2 under UV light. Journal of Catalysis, 2017, 356, 53-64.	3.1	73
23	Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation. Applied Catalysis B: Environmental, 2016, 196, 1-15.	10.8	69
24	Layered Ti3C2 MXene and silver co-modified g-C3N4 with enhanced visible light-driven photocatalytic activity. Chemical Engineering Journal, 2021, 425, 131493.	6.6	67
25	Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts. Applied Catalysis A: General, 2006, 301, 241-250.	2.2	66
26	Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst. Applied Surface Science, 2019, 498, 143869.	3.1	65
27	Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr4+ and PNIPAM-interpenetrated networks. International Journal of Biological Macromolecules, 2019, 126, 1133-1144.	3.6	65
28	Macropore- and Micropore-Dominated Carbon Derived from Poly(vinyl alcohol) and Polyvinylpyrrolidone for Supercapacitor and Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2017, 5, 11324-11333.	3.2	61
29	Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon. Bioresource Technology, 2015, 197, 143-151.	4.8	58
30	Bismuth chromate (Bi2CrO6): A promising semiconductor in photocatalysis. Journal of Catalysis, 2020, 382, 40-48.	3.1	57
31	Effect of Aromatics on Deep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene over NiMo/Al2O3Catalyst. Energy & En	2.5	55
32	2D/2D BiOBr/Ti3C2 heterojunction with dual applications in both water detoxification and water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112099.	2.0	54
33	Highly efficient degradation of phenol over a Pd-BiOBr Mott–Schottky plasmonic photocatalyst. Materials Research Bulletin, 2018, 99, 471-478.	2.7	51
34	Fabrication of surface hydroxyl modified g-C ₃ N ₄ with enhanced photocatalytic oxidation activity. Catalysis Science and Technology, 2019, 9, 3979-3993.	2.1	51
35	Evolution, detrimental effects, and removal of oxygen in microalga cultures: A review. Environmental Progress and Sustainable Energy, 2013, 32, 982-988.	1.3	50
36	Two dimensional graphitic materials for photoelectrocatalysis: A short review. Catalysis Today, 2018, 315, 2-8.	2.2	50

3

#	Article	IF	CITATIONS
37	Recent development on palladium enhanced photocatalytic activity: A review. Journal of Alloys and Compounds, 2020, 830, 154669.	2.8	47
38	Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity. Chemosphere, 2018, 198, 1-12.	4.2	45
39	Fewer-layer BN nanosheets-deposited on Bi2MoO6 microspheres with enhanced visible light-driven photocatalytic activity. Applied Surface Science, 2019, 483, 572-580.	3.1	45
40	Recent advances in computational photocatalysis: A review. Canadian Journal of Chemical Engineering, 2019, 97, 1982-1998.	0.9	45
41	Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity. Journal of Hazardous Materials, 2022, 424, 127711.	6.5	45
42	Recent advances in transition metal selenides-based electrocatalysts: Rational design and applications in water splitting. Journal of Alloys and Compounds, 2022, 918, 165719.	2.8	45
43	New insight into the enhanced visible light-driven photocatalytic activity of Pd/PdCl2-doped Bi2WO6 photocatalysts. Journal of Colloid and Interface Science, 2018, 513, 877-890.	5.0	44
44	Equilibrium and kinetic modelling of adsorption of Rhodamine B on MoS2. Materials Research Bulletin, 2019, 111, 238-244.	2.7	44
45	Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnology Advances, 2019, 37, 569-578.	6.0	44
46	Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnology for Biofuels, 2018, 11, 35.	6.2	43
47	A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization. Journal of Materials Chemistry A, 2019, 7, 15633-15639.	5.2	43
48	TiO2 nanorod arrays decorated by nitrogen-doped carbon and g-C3N4 with enhanced photoelectrocatalytic activity. Applied Surface Science, 2020, 518, 146219.	3.1	43
49	Photocatalytic Reforming for Hydrogen Evolution: A Review. Catalysts, 2020, 10, 335.	1.6	41
50	Photocatalysis for Heavy Metal Treatment: A Review. Processes, 2021, 9, 1729.	1.3	41
51	Ag2O/Ag3VO4/Ag4V2O7 heterogeneous photocatalyst prepared by a facile hydrothermal synthesis with enhanced photocatalytic performance under visible light irradiation. Materials Research Bulletin, 2016, 74, 140-150.	2.7	40
52	Synthesis and characterization of magnetically separable Ag/AgCl–magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection. Applied Catalysis B: Environmental, 2014, 160-161, 267-278.	10.8	38
53	Surface hydroxylation of graphitic carbon nitride: Enhanced visible light photocatalytic activity. Materials Research Bulletin, 2016, 84, 46-56.	2.7	38
54	Cu 2 O NPs/Bi 2 O 2 CO 3 flower-like complex photocatalysts with enhanced visible light photocatalytic degradation of organic pollutants. Catalysis Today, 2017, 297, 237-245.	2.2	38

#	Article	IF	Citations
55	Metal free and efficient photoelectrocatalytic removal of organic contaminants over g-C ₃ N ₄ nanosheet films decorated with carbon quantum dots. RSC Advances, 2017, 7, 56335-56343.	1.7	38
56	Visible-light-driven inactivation of Escherichia coli K-12 using an Ag/AgCl–activated carbon composite photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 267, 25-34.	2.0	36
57	Recent development on BN-based photocatalysis: A review. Materials Science in Semiconductor Processing, 2020, 120, 105256.	1.9	36
58	Development and modeling of a rotating disc photocatalytic reactor for wastewater treatment. Chemical Engineering Journal, 2006, 121, 125-134.	6.6	35
59	Synthesis and characterization of plasmonic and magnetically separable Ag/AgCl-Bi2WO6@ Fe3O4@SiO2 core-shell composites for visible light-induced water detoxification. Journal of Colloid and Interface Science, 2017, 485, 296-307.	5.0	35
60	Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors. Journal of Hazardous Materials, 2019, 380, 120822.	6.5	35
61	Hexagonal SnS nanoplates assembled onto hierarchical Bi2WO6 with enhanced photocatalytic activity in detoxification and disinfection. Journal of Colloid and Interface Science, 2019, 537, 345-357.	5.0	35
62	Synthesis and Optimization of Visible Light Active BiVO ₄ Photocatalysts for the Degradation of RhB. International Journal of Photoenergy, 2015, 2015, 1-14.	1.4	33
63	Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	33
64	Phase Transition in Cobalt Selenide with a Greatly Improved Electrocatalytic Activity in Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 4022-4030.	3.2	33
65	Plasmonic Z-scheme Ag2O-Bi2MoO6 p-n heterojunction photocatalysts with greatly enhanced visible-light responsive activities. Materials Letters, 2017, 189, 267-270.	1.3	31
66	Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy and Environment, 2023, 8, 233-245.	4.7	31
67	Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB. Fuel, 2021, 285, 119171.	3.4	30
68	Rational design of an Allyl-rich Triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. Chemical Engineering Journal, 2022, 429, 132254.	6.6	29
69	Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresource Technology, 2016, 206, 255-263.	4.8	28
70	Synthesis, Analysis, and Testing of BiOBr-Bi ₂ WO ₆ Photocatalytic Heterojunction Semiconductors. International Journal of Photoenergy, 2015, 2015, 1-12.	1.4	27
71	Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56, 132-140.	7.1	25
72	Modulating the Electronic Properties of MoS ₂ Nanosheets for Electrochemical Hydrogen Production: A Review. ACS Applied Nano Materials, 2021, 4, 11413-11427.	2.4	24

#	Article	IF	Citations
73	Alleviation of oxygen stress on Neochloris oleoabundans: effects of bicarbonate and pH. Journal of Applied Phycology, 2017, 29, 143-152.	1.5	23
74	Novel Synthesis of Choline-Based Amino Acid Ionic Liquids and Their Applications for Separating Asphalt from Carbonate Rocks. Nanomaterials, 2019, 9, 504.	1.9	23
75	New insight into reactive oxidation species (ROS) for bismuth-based photocatalysis in phenol removal. Journal of Hazardous Materials, 2020, 399, 122939.	6.5	23
76	Oxygen-deficient titanium dioxide supported cobalt nano-dots as efficient cathode material for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 48, 390-397.	7.1	22
77	Nitrogen Vacancyâ€Induced Deposition of Pd Nanoparticles onto g ₃ N ₄ with Greatly Improved Photocatalytic Activity in H ₂ Evolution. Solar Rrl, 2021, 5, 2100145.	3.1	22
78	Vacancy-engineered bismuth-based semiconductor with enhanced photocatalytic activity: A review. Materials Science in Semiconductor Processing, 2022, 137, 106230.	1.9	22
79	Fabrication of oxygen-vacancy-rich black-BiOBr/BiOBr heterojunction with enhanced photocatalytic activity. Journal of Materials Science, 2020, 55, 10785-10795.	1.7	21
80	Recent advances on silver-based photocatalysis: Photocorrosion inhibition, visible-light responsivity enhancement, and charges separation acceleration. Separation and Purification Technology, 2022, 283, 120194.	3.9	21
81	Enhanced Photocatalytic Activity of BiOBr/ZnO Heterojunction Semiconductors Prepared by Facile Hydrothermal Method. International Journal of Photoenergy, 2015, 2015, 1-9.	1.4	20
82	Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight of Novel CQDs/Bi2O2CO3 Composite. Nanomaterials, 2018, 8, 330.	1.9	19
83	Modified graphitic carbon nitride as the photocatalyst for wastewater treatment under visible light irradiation. Fuel, 2020, 280, 118544.	3.4	19
84	Nonuniform radiation modeling of a corrugated plate photocatalytic reactor. AICHE Journal, 2005, 51, 2024-2033.	1.8	18
85	Design and Characterization of a Novel Rotating Corrugated Drum Reactor for Wastewater Treatment. International Journal of Photoenergy, 2010, 2010, 1-10.	1.4	18
86	High photocatalytic activity of 2D sheet structure ZnO/Bi ₂ WO ₆ Z-scheme heterojunction under simulated sunlight. Journal Physics D: Applied Physics, 2020, 53, 165101.	1.3	18
87	Highly Selective Photocatalytic Reduction of CO ₂ to CO Over Ruâ€Modified Bi ₂ MoO ₆ . Solar Rrl, 2022, 6, .	3.1	18
88	Preparation of Carbon-Silicon Doping Composite Adsorbent Material for Removal of VOCs. Materials, 2019, 12, 2438.	1.3	16
89	An Effective Approach to Improve the Photocatalytic Activity of Graphitic Carbon Nitride via Hydroxyl Surface Modification. Catalysts, 2019, 9, 17.	1.6	15
90	Na4Mn9O18 nanowires wrapped by reduced graphene oxide as efficient sulfur host material for lithium/sulfur batteries. Journal of Solid State Electrochemistry, 2020, 24, 111-119.	1.2	15

#	Article	IF	Citations
91	Investigation of Photo(electro)catalytic water splitting to evolve H2 on Pt-g-C3N4 nanosheets. International Journal of Hydrogen Energy, 2022, 47, 28007-28018.	3.8	15
92	Codon-optimized expression and characterization of a pH stable fungal xylanase in Pichia pastoris. Process Biochemistry, 2017, 53, 80-87.	1.8	14
93	Fabrication of Monopile Polymer Foams via Rotating Gas Foaming: Hybrid Applications in Solarâ€Powered Interfacial Evaporation and Water Remediation. Solar Rrl, 2022, 6, .	3.1	14
94	Rotating corrugated photoreactor design: Experimental and computational analysis of <scp>TiO</scp> ₂ â€based photocatalysis. AICHE Journal, 2013, 59, 560-570.	1.8	13
95	Preparation of Efficient Carbon-Based Adsorption Material Using Asphaltenes from Asphalt Rocks. Industrial & Description of Engineering Chemistry Research, 2019, 58, 14785-14794.	1.8	13
96	Performance and mechanism of the separation of <scp>C8</scp> αâ€olefin from <scp>Fâ€T</scp> synthesis products using novel <scp>Agâ€DES</scp> . AICHE Journal, 2021, 67, e17252.	1.8	13
97	Microwave-assisted synthesis of a superfine Ag/AgI photocatalyst with high activity and excellent durability. Journal of Materials Science, 2015, 50, 6935-6946.	1.7	12
98	Synthesis and Characterization of Graphene Oxide-Modified Bi2WO6and Its Use as Photocatalyst. International Journal of Photoenergy, 2016, 2016, 1-8.	1.4	12
99	Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi ₂ WO ₆ sandwich flaky structures. Nanotechnology, 2020, 31, 425202.	1.3	12
100	Oil-in-Water Self-Assembled Synthesis of Ag@AgCl Nano-Particles on Flower-like Bi2O2CO3 with Enhanced Visible-Light-Driven Photocatalytic Activity. Materials, 2016, 9, 486.	1.3	11
101	Synthesis and application of hydrophilically-modified Fe ₃ O ₄ nanoparticles in oil sands separation. RSC Advances, 2018, 8, 15813-15824.	1.7	11
102	Experimental analysis of a photoreactor packed <scp>w</scp> ith Pdâ€BiVO ₄ â€Coated glass beads. AICHE Journal, 2019, 65, 132-139.	1.8	11
103	The engineering of surface plasmon resonance and up-conversion to improve the photocatalytic performance of MIL-53(Fe) over the full solar spectrum. Journal of Materials Science, 2020, 55, 997-1011.	1.7	11
104	Bismuth chromate (Cr ₂ Bi ₃ O ₁₁): a new bismuth-based semiconductor with excellent photocatalytic activity. Chemical Communications, 2022, 58, 2014-2017.	2.2	11
105	<i>In situ</i> synthesis of N-doped TiO ₂ on Ti ₃ C ₂ MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N ₂ . Inorganic Chemistry Frontiers, 2022, 9, 1195-1207.	3.0	11
106	A novel bismuth hydroxide (Bi(OH) ₃) semiconductor with highly-efficient photocatalytic activity. Chemical Communications, 2022, 58, 8198-8201.	2.2	10
107	Comparison of experimental designs using neural networks. Canadian Journal of Chemical Engineering, 2009, 87, 965-971.	0.9	9
108	Interfacial charge transfer and enhanced photocatalytic mechanisms for Pt nanoparticles loaded onto sulfur-doped g-C3N4 in H2 evolution. Materials Today Energy, 2021, 22, 100881.	2.5	9

#	Article	IF	Citations
109	Cultivation of freshwater green alga <i>Neochloris oleoabundans</i> in nonâ€sterile media coâ€inoculated with protozoa. Canadian Journal of Chemical Engineering, 2016, 94, 439-445.	0.9	8
110	Screening of Alternative Carbon Sources for Recombinant Protein Production in <i>Pichia pastoris</i> . International Journal of Chemical Reactor Engineering, 2016, 14, 251-257.	0.6	8
111	Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr. Materials, 2016, 9, 882.	1.3	7
112	Solar photocatalysis for environmental remediation. , 2020, , 183-195.		7
113	Enhanced Electroconversion CO ₂ â€toâ€Formate by Oxygenâ€Vacancyâ€Rich Ultrasmall Biâ€Based Catalyst Over a Wide Potential Window. ChemCatChem, 2022, 14, .	1.8	7
114	Measurement and Correlation of Solubility of Calcium Formate (Form \hat{l}_{\pm}) in Different Binary Solvent Mixtures at Temperatures from 283.15 to 323.15 K. Journal of Chemical & Engineering Data, 2019, 64, 2475-2483.	1.0	6
115	MgCo layered double hydroxide-based yolk shell polyhedrons as multifunctional sulfur mediator for lithium–sulfur batteries. Nanotechnology, 2022, 33, 115405.	1.3	6
116	Photocatalytic Reduction of CO ₂ on a Bi ₂ Mo _{<i>x</i>} W _{1â€"<i>x</i>} O ₆ Solid Solution with Enhanced Activity. Inorganic Chemistry, 2022, 61, 9405-9412.	1.9	6
117	UV absorption by TiO ₂ films in photocatalytic reactors: Effect of fold curvature. AICHE Journal, 2012, 58, 1578-1587.	1.8	5
118	Catalytic hydrolysis of alkaline sodium borohydride solution for hydrogen evolution in a microâ€scale fluidized bed reactor. International Journal of Energy Research, 2020, 44, 6758-6766.	2.2	5
119	Efficient Synthesis of Isobutylene Dimerization by Catalytic Distillation with Advanced Heat-Integrated Technology. Industrial & Engineering Chemistry Research, 2021, 60, 6121-6136.	1.8	5
120	Separation of taxanes from Taxus canadensis using dynamic pressurized liquid extraction. Biotechnology and Bioprocess Engineering, 2011, 16, 769-776.	1.4	4
121	Production of Energy and Activated Carbon from Agri-Residue: Sunflower Seed Example. Applied Biochemistry and Biotechnology, 2012, 168, 154-162.	1.4	4
122	Statistical Medium Optimization for the Increased Production of Recombinant Phytase in the Fed-Batch Cultivation of Pichia pastoris. International Journal of Chemical Reactor Engineering, 2015, 13, 427-435.	0.6	4
123	Highly Efficient Removal of Suspended Solid Pollutants from Wastewater by Magnetic Fe ₃ O ₄ â€Graphene Oxides Nanocomposite. ChemistrySelect, 2018, 3, 11643-11648.	0.7	4
124	Editorial for special issue of biorefinery. Biotechnology Advances, 2019, 37, 507.	6.0	4
125	Promoted lithium polysulfide conversion and immobilization by conductive titanium oxynitride-carbon architecture design for advanced lithium–sulfur batteries. Nanoscale, 2021, 13, 17929-17938.	2.8	4
126	Accelerating transfer of photogenerated charge carriers by loading PtOx on Cr2Bi3O11 nanorods to enhance photocatalytic activity in water detoxification and splitting. Applied Surface Science, 2022, , 153643.	3.1	4

#	Article	IF	CITATIONS
127	Coupled Transport Phenomena in Corrugated Photocatalytic Reactors. Chinese Journal of Chemical Engineering, 2011, 19, 763-772.	1.7	3
128	Potential of water hyacinth for phytoremediation in low temperature environment. Environmental Progress and Sustainable Energy, 2013, 32, 976-981.	1.3	3
129	Synthesis of 3-dimensional mesoporous silica using a di-block copolymer template. Journal of Materials Science, 2007, 42, 4461-4469.	1.7	2
130	Short communication: acidity of Ni-W catalyst supported on zirconium doped mesoporous SBA-15. Journal of Porous Materials, 2011, 18, 651-654.	1.3	2
131	Coordinated Co-NC/CoFe dual active centre embedded three-dimensional ordered macroporous framework as bifunctional catalyst for efficient and stable zinc–air batteries. Nanotechnology, 2022, 33, 155404.	1.3	1