Raffaella Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2343939/publications.pdf

Version: 2024-02-01

47 papers

3,730 citations

186265
28
h-index

214800 47 g-index

52 all docs 52 docs citations

52 times ranked 4973 citing authors

#	Article	IF	CITATIONS
1	Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nature Communications, 2022, 13, 1483.	12.8	32
2	Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nature Communications, 2021, 12, 5056.	12.8	15
3	BAZ2Aâ€mediated repression via H3K14acâ€marked enhancers promotes prostate cancer stem cells. EMBO Reports, 2021, 22, e53014.	4.5	19
4	Epigenetics and Cancer. Learning Materials in Biosciences, 2021, , 151-177.	0.4	1
5	Looking for a job in a dynamic and collaborative working place? LncRNAs are recruiting!. Cell, 2021, 184, 6019-6021.	28.9	1
6	Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization. Stem Cell Reports, 2020, 15, 1206-1219.	4.8	37
7	TIP5 primes prostate luminal cells for the oncogenic transformation mediated by <i>PTEN</i> loss. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3637-3647.	7.1	17
8	<scp>BAZ</scp> 2A safeguards genome architecture of groundâ€state pluripotent stem cells. EMBO Journal, 2020, 39, e105606.	7.8	14
9	Nucleolus and rRNA Gene Chromatin in Early Embryo Development. Trends in Genetics, 2019, 35, 868-879.	6.7	38
10	Genome Organization in and around the Nucleolus. Cells, 2019, 8, 579.	4.1	92
11	Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenetics and Chromatin, 2018, 11, 60.	3.9	70
12	EZH2-Mediated Primary Cilium Deconstruction Drives Metastatic Melanoma Formation. Cancer Cell, 2018, 34, 69-84.e14.	16.8	123
13	The <scp>RNA</scp> helicase <scp>DHX</scp> 9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Reports, 2017, 18, 1248-1262.	4.5	42
14	Pramel7 mediates ground-state pluripotency through proteasomal–epigenetic combined pathways. Nature Cell Biology, 2017, 19, 763-773.	10.3	33
15	Challenges in the analysis of long noncoding <scp>RNA</scp> functionality. FEBS Letters, 2016, 590, 2342-2353.	2.8	37
16	Helicase CHD4 is an epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma. Journal of Clinical Investigation, 2016, 126, 4237-4249.	8.2	46
17	Identification of <i>cis-</i> and <i>trans</i> -acting elements regulating calretinin expression in mesothelioma cells. Oncotarget, 2016, 7, 21272-21286.	1.8	17
18	Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 2015, 16, 42.	8.8	76

#	Article	IF	CITATIONS
19	The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nature Communications, 2015, 6, 6051.	12.8	281
20	Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma. PLoS Genetics, 2015 , 11 , $e1004877$.	3.5	85
21	BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nature Genetics, 2015, 47, 22-30.	21.4	141
22	IncRNA Maturation to Initiate Heterochromatin Formation in the Nucleolus Is Required for Exit from Pluripotency in ESCs. Cell Stem Cell, 2014, 15, 720-734.	11.1	124
23	ARTD2 activity is stimulated by RNA. Nucleic Acids Research, 2014, 42, 5072-5082.	14.5	42
24	Analysis of Chromatin Composition of Repetitive Sequences: The ChIP-Chop Assay. Methods in Molecular Biology, 2014, 1094, 319-328.	0.9	19
25	The expanding role of <scp>PARP</scp> s in the establishment and maintenance of heterochromatin. FEBS Journal, 2013, 280, 3508-3518.	4.7	50
26	Noncoding RNAs link PARP1 to heterochromatin. Cell Cycle, 2012, 11, 2217-2218.	2.6	8
27	Formation of nuclear heterochromatin. Epigenetics, 2012, 7, 811-814.	2.7	78
28	Inflammasome-Activated Caspase 7 Cleaves PARP1 to Enhance the Expression of a Subset of NF-κB Target Genes. Molecular Cell, 2012, 46, 200-211.	9.7	128
29	Inheritance of Silent rDNA Chromatin Is Mediated by PARP1 via Noncoding RNA. Molecular Cell, 2012, 45, 790-800.	9.7	136
30	Nuclear envelope alterations generate an agingâ€like epigenetic pattern in mice deficient in Zmpste24 metalloprotease. Aging Cell, 2010, 9, 947-957.	6.7	50
31	The NoRC complex mediates heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO Journal, 2010, 29, 2253-2253.	7.8	1
32	The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO Journal, 2010, 29, 2135-2146.	7.8	170
33	Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in <i>trans</i> . EMBO Reports, 2010, 11, 52-58.	4.5	106
34	Epigenetic Engineering of Ribosomal RNA Genes Enhances Protein Production. PLoS ONE, 2009, 4, e6653.	2.5	24
35	Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Research, 2007, 35, 2191-2198.	14.5	128
36	Intergenic Transcripts Regulate the Epigenetic State of rRNA Genes. Molecular Cell, 2006, 22, 351-361.	9.7	302

#	Article	IF	CITATIONS
37	The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO Journal, 2005, 24, 120-127.	7.8	98
38	Epigenetic Mechanism of rRNA Gene Silencing: Temporal Order of NoRC-Mediated Histone Modification, Chromatin Remodeling, and DNA Methylation. Molecular and Cellular Biology, 2005, 25, 2539-2546.	2.3	156
39	Many players, one goal: how chromatin states are inherited during cell division. Biochemistry and Cell Biology, 2005, 83, 332-343.	2.0	18
40	The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genetics, 2002, 32, 393-396.	21.4	393
41	The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO Journal, 2002, 21, 4632-4640.	7.8	212
42	Molecular Mechanisms Mediating Methylation-Dependent Silencing of Ribosomal Gene Transcription. Molecular Cell, 2001, 8, 719-725.	9.7	231
43	UV-Laser Induced Protein/DNA Crosslinking Reveals Sequence Variations of DNA Elements Bound by c-Junin Vivo. Biochemical and Biophysical Research Communications, 1999, 256, 68-74.	2.1	4
44	Specific Inhibitory Effect of H1e Histone Somatic Variant onin VitroDNA-Methylation Process. Biochemical and Biophysical Research Communications, 1996, 220, 102-107.	2.1	12
45	H1–H1 Cross-Linking Efficiency Depends on Genomic DNA Methylation. Biochemical and Biophysical Research Communications, 1996, 227, 768-774.	2.1	1
46	Does hypomethylation of linker DNA play a role in chromatin condensation?. Gene, 1995, 157, 247-251.	2.2	5
47	Specific variants of HI histone regulate CpG methylation in eukaryotic DNA. Gene, 1995, 157, 253-256.	2.2	4