
Vesna Miletic Bds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342867/publications.pdf Version: 2024-02-01

VESNA MULETIC RDS

#	Article	IF	CITATIONS
1	α-tricalcium phosphate/fluorapatite-based cement - promising dental root canal filling material. Processing and Application of Ceramics, 2022, 16, 22-29.	0.8	0
2	A Retrospective Clinical Study on Factors Influencing the Failure of NCCL Restorations. International Journal of Dentistry, 2022, 2022, 1-7.	1.5	0
3	Effects of bioflavonoid-containing mouth rinses on optical properties of tooth-coloured dental restorative materials. Scientific Reports, 2022, 12, .	3.3	3
4	Multifactorial analysis of optical properties, sorption, and solubility of sculptable universal composites for enamel layering upon staining in colored beverages. Journal of Esthetic and Restorative Dentistry, 2021, 33, 943-952.	3.8	6
5	Effects of whitening gels on color and surface properties of a microhybrid and nanohybrid composite. Dental Materials Journal, 2021, 40, 1380-1387.	1.8	4
6	Effect of the Degree of Conversion on Mechanical Properties and Monomer Elution from Self-, Dual- and Light-Cured Core Composites. Materials, 2021, 14, 5642.	2.9	8
7	Effects of non-thermal atmospheric plasma on dentin wetting and adhesive bonding efficiency: Systematic review and meta-analysis. Journal of Dentistry, 2021, 112, 103765.	4.1	3
8	Effects of the light tip position on the degree of conversion and dentin bond strength of a universal adhesive. Srpski Arhiv Za Celokupno Lekarstvo, 2021, 149, 149-154.	0.2	0
9	Dissimilar sintered calcium phosphate dental inserts as dentine substitutes: Shear bond strength to restorative materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2461-2470.	3.4	3
10	Immediate and Long-Term Porosity of Calcium Silicate–Based Sealers. Journal of Endodontics, 2020, 46, 515-523.	3.1	31
11	Clinical efficiency of a sodium perborate - hydrogen peroxide mixture for intracoronal non-vital teeth bleaching. Srpski Arhiv Za Celokupno Lekarstvo, 2020, 148, 24-30.	0.2	5
12	Surface Modification of Dental Materials and Hard Tissues Using Nonthermal Atmospheric Plasma. Lecture Notes in Networks and Systems, 2020, , 119-138.	0.7	0
13	Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives. Clinical Oral Investigations, 2019, 23, 1383-1396.	3.0	18
14	Analysis of the strain and hardness in self-cured and light-cured self-adhesive resin based cement. Journal of Adhesion Science and Technology, 2019, 33, 2684-2695.	2.6	2
15	Color stability of bulkâ€fill and universal composite restorations with dissimilar dentin replacement materials. Journal of Esthetic and Restorative Dentistry, 2019, 31, 520-528.	3.8	15
16	Temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following simulated direct pulp capping. Hemijska Industrija, 2019, 73, 239-248.	0.7	0
17	Microtensile bond strength of universal adhesives to flat versus Class I cavity dentin with pulpal pressure simulation. Journal of Esthetic and Restorative Dentistry, 2018, 30, 240-248.	3.8	8
18	Optical properties of composite restorations influenced by dissimilar dentin restoratives. Dental Materials, 2018, 34, 737-745.	3.5	24

#	Article	IF	CITATIONS
19	Development of Dental Composites. , 2018, , 3-9.		4
20	Bonding to Tooth Tissues. , 2018, , 199-218.		1
21	Low-Shrinkage Composites. , 2018, , 97-112.		4
22	Composite nanostructured hydroxyapatite/yttrium stabilized zirconia dental inserts – The processing and application as dentin substitutes. Ceramics International, 2018, 44, 18200-18208.	4.8	26
23	The effect of calcinated hydroxyapatite and magnesium doped hydroxyapatite as fillers on the mechanical properties of a model BisGMA/TEGDMA dental composite initially and after aging. Metallurgical and Materials Engineering, 2018, 24, .	0.5	3
24	Fluoride release from conventional, resin-modified and hybrid glass ionomer cements. Serbian Dental Journal, 2018, 65, 187-194.	0.2	2
25	Curing characteristics of flowable and sculptable bulk-fill composites. Clinical Oral Investigations, 2017, 21, 1201-1212.	3.0	72
26	Refractive indices of unfilled resin mixtures and cured composites related to color and translucency of conventional and lowâ€shrinkage composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 7-13.	3.4	17
27	Cytotoxicity and genotoxicity of a low-shrinkage monomer and monoacylphosphine oxide photoinitiator: Comparative analyses of individual toxicity and combination effects in mixtures. Dental Materials, 2017, 33, 454-466.	3.5	33
28	Materials and Bioactive Factors in Dental Restoration and Periodontal Therapy. International Journal of Dentistry, 2016, 2016, 1-2.	1.5	0
29	Local deformation fields and marginal integrity of sculptable bulk-fill, low-shrinkage and conventional composites. Dental Materials, 2016, 32, 1441-1451.	3.5	36
30	Shear bond strength to dentine of dental adhesives containing hydroxyapatite nano-fillers. Journal of Adhesion Science and Technology, 2016, 30, 2678-2689.	2.6	11
31	Effect of resin and photoinitiator on color, translucency and color stability of conventional and low-shrinkage model composites. Dental Materials, 2016, 32, 183-191.	3.5	44
32	Effects of a low-shrinkage methacrylate monomer and monoacylphosphine oxide photoinitiator on curing efficiency and mechanical properties of experimental resin-based composites. Materials Science and Engineering C, 2016, 58, 487-494.	7.3	28
33	Evaluation of Staining-Dependent Colour Changes in Resin Composites Using Principal Component Analysis. Scientific Reports, 2015, 5, 14638.	3.3	24
34	Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: <i>in vitro</i> and <i>in vivo</i> study. International Endodontic Journal, 2015, 48, 966-975.	5.0	19
35	Bond strength of restorative materials to hydroxyapatite inserts and dimensional changes of insert-containing restorations during polymerization. Dental Materials, 2015, 31, 171-181.	3.5	17
36	Accuracy of three electronic apex locators in determining the apical foramen in multi-rooted teeth: Randomised clinical and laboratory study. Australian Endodontic Journal, 2015, 41, 35-43.	1.5	7

Vesna Miletic Bds

#	Article	IF	CITATIONS
37	Clinical and CBCT-based diagnosis of furcation involvement in patients with severe periodontitis. Quintessence International, 2015, 46, 863-70.	0.4	11
38	Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dental Materials, 2014, 30, 695-701.	3.5	36
39	Effect of Evaporation on the Shelf Life of a Universal Adhesive. Operative Dentistry, 2014, 39, 500-507.	1.2	12
40	Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system. Journal of Dentistry, 2013, 41, 918-926.	4.1	30
41	Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanical properties of a model BisGMA/TEGDMA composite initially and after storage. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1469-1476.	3.4	27
42	Mathematical modeling of crossâ€linking monomer elution from resinâ€based dental composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 61-67.	3.4	17
43	Analysis of Composite Shrinkage Stresses on 3D Premolar Models with Different Cavity Design Using Finite Element Method. Key Engineering Materials, 2013, 586, 202-205.	0.4	3
44	Posterior composite restorations: Theoretical and practical teaching of undergraduate students in Serbia and abroad. Serbian Dental Journal, 2013, 60, 129-138.	0.2	0
45	Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. Journal of Dentistry, 2012, 40, 106-113.	4.1	73
46	Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units. Journal of Dentistry, 2012, 40, 577-584.	4.1	103
47	Degree of conversion of three fissure sealants cured by different light curing units using micro-Raman spectroscopy. Journal of Dental Sciences, 2012, 7, 26-32.	2.5	5
48	Optimizing the concentration of 2,4,6-trimethylbenzoyldiphenylphosphine oxide initiator in composite resins in relation to monomer conversion. Dental Materials Journal, 2012, 31, 717-723.	1.8	26
49	Sensitivity of composite materials to ambient light and clinical working time. Serbian Dental Journal, 2012, 59, 190-197.	0.2	2
50	Clinical reproducibility of three electronic apex locators. International Endodontic Journal, 2011, 44, 769-776.	5.0	12
51	Monomer elution from nanohybrid and ormocer-based composites cured with different light sources. Dental Materials, 2011, 27, 371-378.	3.5	69
52	Water uptake and solubility of Acroseal sealer in comparison with Apexit and AH Plus sealers in Hank's solution. Srpski Arhiv Za Celokupno Lekarstvo, 2011, 139, 579-582.	0.2	3
53	Practice-based Research in Contemporary Dental Practice. Journal of Contemporary Dental Practice, 2011, 12, 0-0.	0.5	0
54	Analysis of local shrinkage patterns of self-adhering and flowable composites using 3D digital image correlation. Quintessence International, 2011, 42, 797-804.	0.4	1

VESNA MILETIC BDS

#	Article	IF	CITATIONS
55	Micro-raman assessment of the ratio of carbon-carbon double bonds of two adhesive systems cured with LED or halogen light-curing units. Journal of Adhesive Dentistry, 2010, 12, 461-7.	0.5	5
56	Temperature Changes in Siloraneâ€, Ormocerâ€, and Dimethacrylateâ€Based Composites and Pulp Chamber Roof during Lightâ€Curing. Journal of Esthetic and Restorative Dentistry, 2009, 21, 122-131.	3.8	25
57	Quantification of monomer elution and carbon–carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. Journal of Dentistry, 2009, 37, 177-184.	4.1	54
58	Remaining unreacted methacrylate groups in resinâ€based composite with respect to sample preparation and storing conditions using microâ€Raman spectroscopy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 468-474.	3.4	45
59	Quantitative micro-Raman assessment of dentine demineralization, adhesive penetration, and degree of conversion of three dentine bonding systems. European Journal of Oral Sciences, 2008, 116, 177-183.	1.5	50
60	Comparison of the hybrid layer formed by Silorane adhesive, one-step self-etch and etch and rinse systems using confocal micro-Raman spectroscopy and SEM. Journal of Dentistry, 2008, 36, 683-691.	4.1	70
61	Pulp Chamber Temperature Rise During Curing of Resin-Based Composites with Different Light-Curing Units. Primary Dental Care, 2008, 15, 33-38.	0.3	24
62	Temperature Rise Within the Pulp Chamber During Composite Resin Polymerisation Using Three Different Light Sources. Open Dentistry Journal, 2008, 2, 137-141.	0.5	28
63	A Study of Temperature Rise in the Pulp Chamber during Composite Polymerization with Different Light-curing Units. Journal of Contemporary Dental Practice, 2007, 8, 29-37.	0.5	34
64	Dental education of left-handed students. Serbian Dental Journal, 2006, 53, 138-143.	0.2	2
65	Computer literacy and access to the Internet among dental students. Serbian Dental Journal, 2004, 51, 97-102.	0.2	0
66	Radiographie evaluation of restaurations of endodontically treated teeth with individual post. Serbian Dental Journal, 2002, 49, 14-19.	0.2	1
67	Calculation of Maximum Tensile and Shear Forces in Restorative Materials Using Finite Element Method. Key Engineering Materials, 0, 601, 151-154.	0.4	0