
Francis C Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2342044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462, 602-608.	27.8	608
2	Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12132-12137.	7.1	262
3	Structural Basis of CXCR4 Sulfotyrosine Recognition by the Chemokine SDF-1/CXCL12. Science Signaling, 2008, 1, ra4.	3.6	256
4	Interconversion between two unrelated protein folds in the lymphotactin native state. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5057-5062.	7.1	248
5	Structural and functional insights into core ABA signaling. Current Opinion in Plant Biology, 2010, 13, 495-502.	7.1	234
6	Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 2015, 520, 545-548.	27.8	217
7	The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin. Protein Science, 2005, 14, 1071-1081.	7.6	165
8	Cdc42 Regulates the Par-6 PDZ Domain through an Allosteric CRIB-PDZ Transition. Molecular Cell, 2004, 13, 665-676.	9.7	142
9	Recognition of a CXCR4 Sulfotyrosine by the Chemokine Stromal Cell-derived Factor-1α (SDF-1α/CXCL12). Journal of Molecular Biology, 2006, 359, 1400-1409.	4.2	116
10	Dynamic control of plant water use using designed ABA receptor agonists. Science, 2019, 366, .	12.6	107
11	Structural basis for selective activation of ABA receptors. Nature Structural and Molecular Biology, 2010, 17, 1109-1113.	8.2	104
12	Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20838-20843.	7.1	89
13	Monomeric structure of the cardioprotective chemokine SDFâ€1/CXCL12. Protein Science, 2009, 18, 1359-1369.	7.6	74
14	Structural basis for chemokine recognition by a G protein–coupled receptor and implications for receptor activation. Science Signaling, 2017, 10, .	3.6	74
15	Identification and Characterization of a Glycosaminoglycan Recognition Element of the C Chemokine Lymphotactin. Journal of Biological Chemistry, 2004, 279, 12598-12604.	3.4	68
16	Targeting SDF-1/CXCL12 with a Ligand That Prevents Activation of CXCR4 through Structure-Based Drug Design. Journal of the American Chemical Society, 2010, 132, 7242-7243.	13.7	68
17	Orphan Macrodomain Protein (Human C6orf130) Is an O-Acyl-ADP-ribose Deacylase. Journal of Biological Chemistry, 2011, 286, 35955-35965.	3.4	65
18	Evolution of fold switching in a metamorphic protein. Science, 2021, 371, 86-90.	12.6	59

FRANCIS C PETERSON

#	Article	IF	CITATIONS
19	A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS Chemical Biology, 2017, 12, 2842-2848.	3.4	57
20	An Engineered Second Disulfide Bond Restricts Lymphotactin/XCL1 to a Chemokine-like Conformation with XCR1 Agonist Activityâ€. Biochemistry, 2007, 46, 2564-2573.	2.5	52
21	Multiple WASP-interacting Protein Recognition Motifs Are Required for a Functional Interaction with N-WASP. Journal of Biological Chemistry, 2007, 282, 8446-8453.	3.4	44
22	A Single Mutation Promotes Amyloidogenicity through a Highly Promiscuous Dimer Interface. Structure, 2010, 18, 563-570.	3.3	42
23	A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration. Nature Cell Biology, 2020, 22, 266-273.	10.3	40
24	Solution Structure of CCL21 and Identification of a Putative CCR7 Binding Site. Biochemistry, 2012, 51, 733-735.	2.5	39
25	Solution Structure of CCL19 and Identification of Overlapping CCR7 and PSGL-1 Binding Sites. Biochemistry, 2015, 54, 4163-4166.	2.5	37
26	Structural Determinants Involved in the Regulation of CXCL14/BRAK Expression by the 26 S Proteasome. Journal of Molecular Biology, 2006, 363, 813-822.	4.2	34
27	Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nature Biotechnology, 2022, 40, 1855-1861.	17.5	34
28	Production of Recombinant Chemokines and Validation of Refolding. Methods in Enzymology, 2016, 570, 539-565.	1.0	30
29	Identification of a fourth mannose 6-phosphate binding site in the cation-independent mannose 6-phosphate receptor. Glycobiology, 2015, 25, 591-606.	2.5	29
30	Structure-Based Identification of Novel Ligands Targeting Multiple Sites within a Chemokine–G-Protein-Coupled-Receptor Interface. Journal of Medicinal Chemistry, 2016, 59, 4342-4351.	6.4	29
31	Binding of Crumbs to the Par-6 CRIB-PDZ Module Is Regulated by Cdc42. Biochemistry, 2016, 55, 1455-1461.	2.5	29
32	Solution structure of thioredoxinh1 fromArabidopsis thaliana. Protein Science, 2005, 14, 2195-2200.	7.6	27
33	Structure of the Lectin Mannose 6-Phosphate Receptor Homology (MRH) Domain of Glucosidase II, an Enzyme That Regulates Glycoprotein Folding Quality Control in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2013, 288, 16460-16475.	3.4	26
34	The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function. PLoS Pathogens, 2015, 11, e1004795.	4.7	25
35	Structure of the SCAN Domain from the Tumor Suppressor protein MZF1. Journal of Molecular Biology, 2006, 363, 137-147.	4.2	23
36	Engineering Metamorphic Chemokine Lymphotactin/XCL1 into the GAG-Binding, HIV-Inhibitory Dimer Conformation. ACS Chemical Biology, 2015, 10, 2580-2588.	3.4	23

FRANCIS C PETERSON

#	Article	IF	CITATIONS
37	CCR7 Sulfotyrosine Enhances CCL21 Binding. International Journal of Molecular Sciences, 2017, 18, 1857.	4.1	21
38	Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
39	Structure-Function Analysis of CCL28 in the Development of Post-viral Asthma. Journal of Biological Chemistry, 2015, 290, 4528-4536.	3.4	19
40	NMR Structure of the C-Terminal Transmembrane Domain of the HDL Receptor, SR-BI, and a Functionally Relevant Leucine Zipper Motif. Structure, 2017, 25, 446-457.	3.3	19
41	The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Science Signaling, 2021, 14, .	3.6	19
42	Electrostatic Optimization of the Conformational Energy Landscape in a Metamorphic Protein. Biochemistry, 2012, 51, 9067-9075.	2.5	17
43	Conformational selection guides β-arrestin recruitment at a biased G protein–coupled receptor. Science, 2022, 377, 222-228.	12.6	16
44	Crystal Structure and Functional Analyses of the Lectin Domain of Glucosidase II: Insights into Oligomannose Recognition. Biochemistry, 2015, 54, 4097-4111.	2.5	15
45	Examination of Glycosaminoglycan Binding Sites on the XCL1 Dimer. Biochemistry, 2016, 55, 1214-1225.	2.5	15
46	Structure and Dimerization of IreB, a Negative Regulator of Cephalosporin Resistance in Enterococcus faecalis. Journal of Molecular Biology, 2017, 429, 2324-2336.	4.2	15
47	The Solution Structure of CCL28 Reveals Structural Lability that Does Not Constrain Antifungal Activity. Journal of Molecular Biology, 2018, 430, 3266-3282.	4.2	14
48	Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry. EBioMedicine, 2016, 10, 45-54.	6.1	13
49	Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Proteinâ€Đetected NMR Spectroscopy. ChemBioChem, 2018, 19, 448-458.	2.6	13
50	Structural Features of an Extended C-Terminal Tail Modulate the Function of the Chemokine CCL21. Biochemistry, 2020, 59, 1338-1350.	2.5	11
51	Solution NMR spectroscopy of GPCRs: Residue-specific labeling strategies with a focus on 13C-methyl methionine labeling of the atypical chemokine receptor ACKR3. Methods in Cell Biology, 2019, 149, 259-288.	1.1	9
52	Expression, purification and reconstitution of the C-terminal transmembrane domain of scavenger receptor BI into detergent micelles for NMR analysis. Protein Expression and Purification, 2015, 107, 35-42.	1.3	8
53	Interactions between AMOT PPxY motifs and NEDD4L WW domains function in HIV-1 release. Journal of Biological Chemistry, 2021, 297, 100975.	3.4	8
54	The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. Journal of Biological Chemistry, 2020, 295, 13927-13939.	3.4	7

FRANCIS C PETERSON

#	ARTICLE	IF	CITATIONS
55	Structural Insights into Molecular Recognition by Human Chemokine CCL19. Biochemistry, 2022, 61, 311-318.	2.5	4
56	The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. PLoS Pathogens, 2022, 18, e1010355.	4.7	4
57	Selective Boosting of CCR7-Acting Chemokines; Short Peptides Boost Chemokines with Short Basic Tails, Longer Peptides Boost Chemokines with Long Basic Tails. International Journal of Molecular Sciences, 2022, 23, 1397.	4.1	3
58	Bacterial expression of the phosphodiester-binding site of the cation-independent mannose 6-phosphate receptor for crystallographic and NMR studies. Protein Expression and Purification, 2015, 111, 91-97.	1.3	1
59	Specific bindingâ€induced modulation of the XCL1 metamorphic equilibrium. Biopolymers, 2020, 112, e23402.	2.4	1
60	The Synthesis and Anti-Cytomegalovirus Activity of Piperidine-4-Carboxamides. Viruses, 2022, 14, 234.	3.3	1
61	Structural Determination of a SCAN Domain Homodimer and Heterodimer. FASEB Journal, 2006, 20, A95.	0.5	0
62	Structural and functional characterization of Glucosidase II Nâ€glycan binding domain. FASEB Journal, 2012, 26, 796.1.	0.5	0
63	Development of a Molecular Probe Targeting Mitochondrial Fission Protein Fis1. FASEB Journal, 2018, 32, 530.17.	0.5	0
64	Structural Basis of Nanobody Induced ACKR3 Inhibition. FASEB Journal, 2022, 36, .	0.5	0