Amir Sapir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2340940/publications.pdf

Version: 2024-02-01

16 papers	767 citations	12 h-index	996975 15 g-index
16	16	16	884
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	AFF-1, a FOS-1-Regulated Fusogen, Mediates Fusion of the Anchor Cell in C. elegans. Developmental Cell, 2007, 12, 683-698.	7.0	125
2	The C. elegans Developmental Fusogen EFF-1 Mediates Homotypic Fusion in Heterologous Cells and In Vivo. Developmental Cell, 2006, 11, 471-481.	7.0	124
3	Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes and Development, 2002, 16, 222-234.	5.9	111
4	Viral and Developmental Cell Fusion Mechanisms: Conservation and Divergence. Developmental Cell, 2008, 14, 11-21.	7.0	101
5	Conserved Eukaryotic Fusogens Can Fuse Viral Envelopes to Cells. Science, 2011, 332, 589-592.	12.6	75
6	Unidirectional Notch signaling depends on continuous cleavage of Delta. Development (Cambridge), 2005, 132, 123-132.	2.5	49
7	Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Frontiers in Microbiology, 2014, 5, 43.	3.5	39
8	Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3880-9.	7.1	39
9	Overexpression of mouse Mdm2 induces developmental phenotypes in Drosophila. Oncogene, 2002, 21, 2413-2417.	5.9	23
10	Newly Identified Nematodes from Mono Lake Exhibit Extreme Arsenic Resistance. Current Biology, 2019, 29, 3339-3344.e4.	3.9	23
11	The UPRmt Protects <i>Caenorhabditis elegans</i> from Mitochondrial Dysfunction by Upregulating Specific Enzymes of the Mevalonate Pathway. Genetics, 2018, 209, 457-473.	2.9	22
12	Metabolic Reconfiguration in C.Âelegans Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom. Current Biology, 2020, 30, 3031-3038.e7.	3.9	20
13	Not So Slim Anymore—Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules, 2020, 10, 1154.	4.0	7
14	Why are nematodes so successful extremophiles?. Communicative and Integrative Biology, 2021, 14, 24-26.	1.4	7
15	Conserved statin-mediated activation of the p38-MAPK pathway protects Caenorhabditis elegans from the cholesterol-independent effects of statins. Molecular Metabolism, 2020, 39, 101003.	6.5	2
16	A sterol-defined system for quantitative studies of sterol metabolism in C.Âelegans. STAR Protocols, 2021, 2, 100710.	1.2	0