Jimmy C Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2340060/publications.pdf

Version: 2024-02-01

355	44,793	115	201
papers	citations	h-index	g-index
366	366	366	37225
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2Powders. Chemistry of Materials, 2002, 14, 3808-3816.	3.2	2,068
2	The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition. Journal of Physical Chemistry B, 2003, 107, 13871-13879.	1.2	1,113
3	Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chemical Communications, 2011, 47, 6763.	2.2	867
4	Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania. Environmental Science & E	4.6	754
5	Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chemistry of Materials, 2003, 15, 2280-2286.	3.2	701
6	αâ€Fe ₂ O ₃ Nanorings Prepared by a Microwaveâ€Assisted Hydrothermal Process and Their Sensing Properties. Advanced Materials, 2007, 19, 2324-2329.	11.1	602
7	Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2013, 135, 5588-5601.	6.6	597
8	Effective Photocatalytic Disinfection of <i>E. coli</i> K-12 Using AgBrâ^'Agâ^'Bi ₂ WO ₆ Nanojunction System Irradiated by Visible Light: The Role of Diffusing Hydroxyl Radicals. Environmental Science & Echnology, 2010, 44, 1392-1398.	4.6	557
9	Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters. Journal of the American Chemical Society, 2020, 142, 7036-7046.	6.6	542
10	Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2. Langmuir, 2004, 20, 5865-5869.	1.6	519
11	Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. Journal of Catalysis, 2003, 217, 69-69.	3.1	518
12	Morphology-Controllable Synthesis of Mesoporous CeO2Nano- and Microstructures. Chemistry of Materials, 2005, 17, 4514-4522.	3.2	507
13	Graphene-based photocatalytic composites. RSC Advances, 2011, 1, 1426.	1.7	499
14	WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. Journal of Materials Chemistry, 2012, 22, 8525.	6.7	484
15	Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir, 2010, 26, 3031-3039.	1.6	464
16	Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Applied Catalysis B: Environmental, 2002, 36, 31-43.	10.8	450
17	Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. Journal of the American Chemical Society, 2003, 125, 16025-16034.	6.6	443
18	Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania. Langmuir, 2005, 21, 2552-2559.	1.6	443

#	Article	IF	CITATIONS
19	Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 2005, 289, 186-196.	2.2	434
20	Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A, 2006, 244, 25-32.	4.8	415
21	A New Visible-Light Photocatalyst: CdS Quantum Dots Embedded Mesoporous TiO ₂ . Environmental Science & Technology, 2009, 43, 7079-7085.	4.6	413
22	Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres. Advanced Materials, 2005, 17, 756-760.	11.1	396
23	Tuning the Grain Size and Particle Size of Superparamagnetic Fe ₃ O ₄ Microparticles. Chemistry of Materials, 2009, 21, 5079-5087.	3.2	387
24	Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere, 2009, 76, 1185-1191.	4.2	386
25	Graphene and g-C ₃ N ₄ Nanosheets Cowrapped Elemental α-Sulfur As a Novel Metal-Free Heterojunction Photocatalyst for Bacterial Inactivation under Visible-Light. Environmental Science & Environmental Science (Science) Environmental Science) Environmental Science (Science) Environmental En	4.6	383
26	High-Efficiency "Working-in-Tandem―Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. Journal of the American Chemical Society, 2018, 140, 8497-8508.	6.6	382
27	Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis B: Environmental, 2005, 61, 1-11.	10.8	377
28	Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2Films Coated on a Stainless Steel Substrate. Environmental Science & Environmental Science & 2003, 2003, 37, 2296-2301.	4.6	359
29	Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chemical Communications, 2006, , 1115 .	2.2	359
30	Preparation, Characterization, and Catalytic Activity of Core/Shell Fe ₃ O ₄ @Polyaniline@Au Nanocomposites. Langmuir, 2009, 25, 11835-11843.	1.6	351
31	g-C ₃ N ₄ quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chemical Communications, 2014, 50, 10148-10150.	2.2	351
32	Ordered Mesoporous BiVO ₄ through Nanocasting: A Superior Visible Light-Driven Photocatalyst. Chemistry of Materials, 2008, 20, 3983-3992.	3.2	340
33	Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon, 2013, 60, 437-444.	5.4	335
34	A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chemical Communications, 2009, , 4381.	2.2	327
35	Direct Sonochemical Preparation and Characterization of Highly Active Mesoporous TiO2 with a Bicrystalline Framework. Chemistry of Materials, 2002, 14, 4647-4653.	3.2	325
36	Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chemical Communications, 2001, , 1942-1943.	2.2	321

#	Article	IF	CITATIONS
37	Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale, 2013, 5, 2142.	2.8	313
38	Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment, 2003, 37, 31-39.	1.9	311
39	Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 217, 570-580.	10.8	311
40	Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere, 2002, 46, 905-912.	4.2	305
41	AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components. Applied Catalysis A: General, 2009, 363, 221-229.	2.2	304
42	Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates. Journal of Physical Chemistry B, 2004, 108, 64-70.	1.2	303
43	Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NO <i>_x</i> . Langmuir, 2008, 24, 3510-3516.	1.6	288
44	Photocatalytic Activity of Rutile Tilâ^'xSnxO2Solid Solutions. Journal of Catalysis, 1999, 183, 368-372.	3.1	287
45	Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society, 2011, 133, 1106-1111.	6.6	287
46	Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated TiO2with Enhanced Photocatalytic and Bactericidal Activities. Langmuir, 2003, 19, 10372-10380.	1.6	271
47	Red phosphorus: An elemental photocatalyst for hydrogen formation from water. Applied Catalysis B: Environmental, 2012, 111-112, 409-414.	10.8	265
48	An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 116, 63-67.	2.0	261
49	Plasmon-enhanced chemical reactions. Journal of Materials Chemistry A, 2013, 1, 5790.	5.2	257
50	Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films. Chemistry of Materials, 2004, 16, 1523-1530.	3.2	254
51	Visible-Light-Driven Photocatalytic Inactivation of <i>E. coli</i> K-12 by Bismuth Vanadate Nanotubes: Bactericidal Performance and Mechanism. Environmental Science & Environm	4.6	254
52	Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. Journal of Environmental Sciences, 2015, 34, 232-247.	3.2	251
53	Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry, 2002, 26, 607-613.	1.4	247
54	Continuous Aspectâ€Ratio Tuning and Fine Shape Control of Monodisperse <i>α</i> â€Fe ₂ O ₃ Nanocrystals by a Programmed Microwave–Hydrothermal Method. Advanced Functional Materials, 2008, 18, 880-887.	7.8	246

#	Article	IF	CITATIONS
55	Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006, 179, 1171-1176.	1.4	245
56	Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2870.	15.6	245
57	Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwaveâ€Polyol Process and Their Application for Humidity Sensing. Advanced Materials, 2008, 20, 4845-4850.	11.1	242
58	A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015, 3, 3285-3288.	5.2	232
59	(Gold Core)@(Ceria Shell) Nanostructures for Plasmon-Enhanced Catalytic Reactions under Visible Light. ACS Nano, 2014, 8, 8152-8162.	7.3	230
60	Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for "Green―Bacterial Inactivation under Visible Light. Environmental Science & Environm	4.6	226
61	ZrO2-Modified Mesoporous Nanocrystalline TiO2-xNxas Efficient Visible Light Photocatalysts. Environmental Science & Technology, 2006, 40, 2369-2374.	4.6	224
62	A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activityElectronic Supplementary Information (ESI) available: XRD patterns, nitrogen adsorption/desorption isotherms, pore size distribution curves, photocatalytic activities and physicochemical properties of HPT and SMT. See http://www.rsc.org/suppdata/cc/b3/b306013f/. Chemical	2.2	212
63	Communications, 2003, , 2078. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Applied Catalysis B: Environmental, 2018, 238, 126-135.	10.8	209
64	Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Applied Catalysis B: Environmental, 2003, 46, 35-47.	10.8	207
65	Porous Singleâ€Crystalline Palladium Nanoparticles with High Catalytic Activities. Angewandte Chemie - International Edition, 2012, 51, 4872-4876.	7.2	206
66	Ti1-xZrxO2Solid Solutions for the Photocatalytic Degradation of Acetone in Air. Journal of Physical Chemistry B, 1998, 102, 5094-5098.	1.2	205
67	A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018, 30, e1804368.	11.1	204
68	Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO ₂ Reduction in Artificial Photosynthesis. ACS Catalysis, 2016, 6, 6444-6454.	5.5	201
69	Facile synthesis of size-controllable monodispersed ferrite nanospheres. Journal of Materials Chemistry, 2010, 20, 5086.	6.7	197
70	Synthesis of Biocompatible, Mesoporous Fe ₃ O ₄ Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications. ACS Applied Materials & District Resonance Imaging and Therapeutic Applications. ACS Applied Materials & District Resonance Imaging and Therapeutic Applications. ACS Applied Materials & District Resonance Imaging and Therapeutic Applications.	4.0	197
71	High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nature Catalysis, 2022, 5, 564-570.	16.1	197
72	Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C ₃ N ₄ photocatalyst. Chemical Communications, 2014, 50, 10837.	2.2	192

#	Article	IF	CITATIONS
73	Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis. Advanced Functional Materials, 2017, 27, 1703484.	7.8	188
74	Probing of photocatalytic surface sites on SO42â^'/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 339-347.	2.0	184
75	Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes. Advanced Functional Materials, 2003, 13, 955-960.	7.8	182
76	Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 263-271.	2.0	173
77	Inorganic materials for photocatalytic water disinfection. Journal of Materials Chemistry, 2010, 20, 4529.	6.7	173
78	An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency. Angewandte Chemie - International Edition, 2016, 55, 9580-9585.	7.2	171
79	An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking Down Nitric Oxide. Environmental Science & Dychnology, 2010, 44, 4276-4281.	4.6	170
80	Cdln2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: Synthesis, characterizations and photocatalytic inactivation mechanisms. Applied Catalysis B: Environmental, 2013, 129, 482-490.	10.8	170
81	Synthesis and Characterization of TiO2@C Coreâ^'Shell Composite Nanoparticles and Evaluation of Their Photocatalytic Activities. Chemistry of Materials, 2006, 18, 2275-2282.	3.2	166
82	NaYF4:Yb,Tm/CdS composite as a novel near-infrared-driven photocatalyst. Applied Catalysis B: Environmental, 2010, 100, 433-439.	10.8	165
83	Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 213-219.	1.7	161
84	Effects of Trifluoroacetic Acid Modification on the Surface Microstructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir, 2003, 19, 3889-3896.	1.6	160
85	Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2003, 42, 47-55.	10.8	159
86	A Simple and General Method for the Synthesis of Multicomponent Na2V6O16·3H2O Single-Crystal Nanobelts. Journal of the American Chemical Society, 2004, 126, 3422-3423.	6.6	158
87	Photooxidation of azo dye in aqueous dispersions of H2O2∫α-FeOOH. Applied Catalysis B: Environmental, 2002, 39, 211-220.	10.8	157
88	Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films, 2006, 496, 273-280.	0.8	154
89	Enhancing Charge Separation in Metallic Photocatalysts: A Case Study of the Conducting Molybdenum Dioxide. Advanced Functional Materials, 2016, 26, 4445-4455.	7.8	154
90	Monoclinic dibismuth tetraoxide: A new visible-light-driven photocatalyst for environmental remediation. Applied Catalysis B: Environmental, 2015, 176-177, 444-453.	10.8	153

#	Article	IF	Citations
91	Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. Physical Chemistry Chemical Physics, 2009, $11,3775$.	1.3	152
92	Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation. Separation and Purification Technology, 2013, 120, 110-122.	3.9	152
93	A Mesoporous Pt/TiO2 Nanoarchitecture with Catalytic and Photocatalytic Functions. Chemistry - A European Journal, 2005, 11 , 2997-3004.	1.7	150
94	Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.	4.6	148
95	Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. Journal of Molecular Catalysis A, 2006, 247, 268-274.	4.8	146
96	One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2013, 129, 80-88.	10.8	145
97	Biomolecule-assisted fabrication of copper doped SnS ₂ nanosheet–reduced graphene oxide junctions with enhanced visible-light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 1000-1005.	5.2	144
98	Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale, 2013, 5, 2028.	2.8	143
99	Fast Production of Self-Assembled Hierarchical α-Fe ₂ O ₃ Nanoarchitectures. Journal of Physical Chemistry C, 2007, 111, 11180-11185.	1.5	140
100	A Simple Way to Prepare C–N-Codoped TiO2 Photocatalyst with Visible-Light Activity. Catalysis Letters, 2009, 129, 462-470.	1.4	139
101	Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New Journal of Chemistry, 2002, 26, 416-420.	1.4	136
102	Photochemical growth of nanoporous SnO2 at the air–water interface and its high photocatalytic activity. Journal of Materials Chemistry, 2010, 20, 5641.	6.7	133
103	Efficient Degradation of Organic Pollutants by Using Dioxygen Activated by Resin-Exchanged Iron(II) Bipyridine under Visible Irradiation. Angewandte Chemie - International Edition, 2003, 42, 1029-1032.	7.2	132
104	Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 331-339.	2.0	131
105	The effect of Fâ^'-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. Journal of Solid State Chemistry, 2003, 174, 372-380.	1.4	127
106	Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. New Journal of Chemistry, 2004, 28, 1027.	1.4	126
107	lonothermal synthesis of hierarchical BiOBr microspheres for water treatment. Journal of Hazardous Materials, 2012, 211-212, 104-111.	6.5	126
108	A NIR-driven photocatalyst based on α-NaYF 4 :Yb,Tm@TiO 2 core–shell structure supported on reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 182, 184-192.	10.8	126

#	Article	IF	CITATIONS
109	Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. Journal of Solid State Chemistry, 2004, 177, 3666-3674.	1.4	123
110	Direct sonochemical preparation of high-surface-area nanoporous ceria and ceria–zirconia solid solutions. Journal of Colloid and Interface Science, 2003, 260, 240-243.	5.0	122
111	Rapid Mass Production of Hierarchically Porous Znln2S4Submicrospheres via a Microwave-Solvothermal Process. Crystal Growth and Design, 2007, 7, 2444-2448.	1.4	122
112	Ultrasound, pH, and Magnetically Responsive Crown-Ether-Coated Core/Shell Nanoparticles as Drug Encapsulation and Release Systems. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1566-1574.	4.0	122
113	Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale, 2013, 5, 6307.	2.8	121
114	Biocompatible Anatase Single-Crystal Photocatalysts with Tunable Percentage of Reactive Facets. Crystal Growth and Design, 2010, 10, 1130-1137.	1.4	120
115	Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156, 171-177.	2.0	119
116	Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalystElectronic supplementary information (ESI) available: UV-visible absorption spectra, XRD patterns and EPR spectrum. See http://www.rsc.org/suppdata/cc/b3/b302418k/. Chemical Communications, 2003, , 1552.	2.2	118
117	Covalent Fixation of Surface Oxygen Atoms on Hematite Photoanode for Enhanced Water Oxidation. Chemistry of Materials, 2016, 28, 564-572.	3.2	118
118	Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania. Applied Catalysis A: General, 2003, 255, 309-320.	2.2	117
119	An ordered cubic lm3m mesoporous Cr–TiO2visible light photocatalyst. Chemical Communications, 2006, , 2717-2719.	2.2	117
120	Preparation of WO3/ZnO Composite Photocatalyst and Its Photocatalytic Performance. Chinese Journal of Catalysis, 2011, 32, 555-565.	6.9	114
121	Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials, 2017, 238, 62-68.	2.2	114
122	Enhanced photo-Fenton degradation of rhodamine B using graphene oxide–amorphous FePO4 as effective and stable heterogeneous catalyst. Journal of Colloid and Interface Science, 2015, 448, 460-466.	5.0	113
123	Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets. Chemistry of Materials, 2020, 32, 1488-1494.	3.2	113
124	Influence of Thermal Treatment on the Adsorption of Oxygen and Photocatalytic Activity of TiO2. Langmuir, 2000, 16, 7304-7308.	1.6	112
125	Metal Nanocrystalâ€Embedded Hollow Mesoporous TiO ₂ and ZrO ₂ Microspheres Prepared with Polystyrene Nanospheres as Carriers and Templates. Advanced Functional Materials, 2013, 23, 2137-2144.	7.8	112
126	One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. Journal of Solid State Chemistry, 2004, 177, 4640-4647.	1.4	109

#	Article	IF	CITATIONS
127	Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. Journal of Materials Chemistry B, 2014, 2, 452-470.	2.9	108
128	Converting Carbohydrates to Carbon-Based Photocatalysts for Environmental Treatment. Environmental Science & Environmental Sci	4.6	107
129	Solvent extraction of dithiocarbamate complexes and back-extraction with mercury(II) for determination of trace metals in seawater by atomic absorption spectrometry. Analytical Chemistry, 1982, 54, 2536-2539.	3.2	106
130	Photocatalytic oxidation of triclosan. Chemosphere, 2006, 65, 390-399.	4.2	106
131	Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. Journal of Solid State Chemistry, 2009, 182, 1061-1069.	1.4	105
132	Hierarchically Nanostructured Rutile Arrays: Acid Vapor Oxidation Growth and Tunable Morphologies. ACS Nano, 2009, 3, 1212-1218.	7.3	105
133	A General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils:  The Case of Nickel Sulfide. Journal of the American Chemical Society, 2004, 126, 8116-8117.	6.6	104
134	Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst. Applied Catalysis B: Environmental, 2003, 40, 131-140.	10.8	103
135	Sonochemical fabrication, characterization and photocatalytic properties of Ag/ZnWO4 nanorod catalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 16-22.	1.7	103
136	CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. Journal of Materials Chemistry A, 2013, 1, 5158.	5.2	101
137	Photocatalytic disinfection of marine bacteria using fluorescent light. Water Research, 2008, 42, 4827-4837.	5.3	100
138	Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation. Journal of Alloys and Compounds, 2011, 509, 4547-4552.	2.8	100
139	Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO ₃ nanoplates. Chemical Communications, 2014, 50, 10416.	2.2	100
140	Fabrication, characterization of \hat{l}^2 -MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration. Catalysis Today, 2014, 224, 154-162.	2.2	97
141	Onâ€Demand Synthesis of H ₂ O ₂ by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation. Angewandte Chemie - International Edition, 2020, 59, 20538-20544.	7.2	96
142	High-Yield Synthesis of Nickel and Nickel Phosphide Nanowires via Microwave-Assisted Processes. Chemistry of Materials, 2008, 20, 6743-6749.	3.2	93
143	Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature. Journal of Solid State Chemistry, 2005, 178, 321-328.	1.4	91
144	Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale, 2014, 6, 14163-14167.	2.8	91

#	Article	IF	Citations
145	l̂²-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Analytica Chimica Acta, 2003, 477, 93-101.	2.6	90
146	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1745-1748.	0.5	89
147	Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films. Journal of Materials Chemistry, 2002, 12, 81-85.	6.7	89
148	Enhanced Mass Transfer of Oxygen through a Gas–Liquid–Solid Interface for Photocatalytic Hydrogen Peroxide Production. Advanced Functional Materials, 2021, 31, 2106120.	7.8	88
149	Efficient H2O2Oxidation of Organic Pollutants Catalyzed by Supported Iron Sulfophenylporphyrin under Visible Light Irradiation. Journal of Physical Chemistry B, 2004, 108, 7263-7270.	1.2	84
150	Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm, 2010, 12, 1759.	1.3	84
151	Enhanced photocatalytic activity of Ti1â^'xVxO2 solid solution on the degradation of acetone. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 111, 199-203.	2.0	83
152	Sono- and Photochemical Routes for the Formation of Highly Dispersed Gold Nanoclusters in Mesoporous Titania Films. Advanced Functional Materials, 2004, 14, 1178-1183.	7.8	83
153	Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol. Journal of Hazardous Materials, 2012, 237-238, 38-45.	6.5	83
154	The Effect of SiO2 Addition on the Grain Size and Photocatalytic Activity of TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 2002, 24, 95-103.	1.1	81
155	Photocatalytic Activity and Characterization of the Sol-Gel Derived Pb-Doped TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 2002, 24, 39-48.	1.1	80
156	Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. Chinese Journal of Catalysis, 2014, 35, 1609-1618.	6.9	80
157	Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation. Materials Research Bulletin, 2011, 46, 140-146.	2.7	79
158	Hierarchical P/YPO4 microsphere for photocatalytic hydrogen production from water under visible light irradiation. Applied Catalysis B: Environmental, 2012, 119-120, 267-272.	10.8	79
159	Efficient generation of singlet oxygen on modified g-C3N4 photocatalyst for preferential oxidation of targeted organic pollutants. Chemical Engineering Journal, 2022, 431, 134241.	6.6	77
160	Zn:ln(OH) _{<i>y</i>} S _{<i>z</i>} Solid Solution Nanoplates: Synthesis, Characterization, and Photocatalytic Mechanism. Environmental Science & Environmental S	4.6	76
161	AglnS2/ln2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy, 2018, 46, 234-240.	8.2	76
162	A General inâ€situ Hydrothermal Rolling-Up Formation of One-Dimensional, Single-Crystalline Lead Telluride Nanostructures. Small, 2005, 1, 349-354.	5.2	75

#	Article	IF	Citations
163	Effects of Cu2O nanoparticle and CuCl2 on zebrafish larvae and a liver cell-line. Aquatic Toxicology, 2011, 105, 344-354.	1.9	7 5
164	Semiconductor/biomolecular composites for solar energy applications. Energy and Environmental Science, 2011, 4, 100-113.	15.6	75
165	Three-Dimensionally Ordered Mesoporous Molecular-Sieve Films as Solid Superacid Photocatalysts. Advanced Materials, 2005, 17, 99-102.	11.1	7 3
166	Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2013, 1, 12221.	5.2	73
167	Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy. Journal of Materials Chemistry B, 2013, 1, 2934.	2.9	72
168	Mesoporous Structures from Supramolecular Assembly of in situ Generated ZnS Nanoparticles. Langmuir, 2003, 19, 5904-5911.	1.6	71
169	Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts. Science China Chemistry, 2012, 55, 1802-1810.	4.2	71
170	Enhanced CO ₂ reduction and valuable C ₂₊ chemical production by a CdS-photosynthetic hybrid system. Nanoscale, 2019, 11, 9296-9301.	2.8	71
171	Sol–gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids, 2010, 71, 1337-1343.	1.9	70
172	Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022, 303, 120878.	10.8	70
173	Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. Science of the Total Environment, 2002, 300, 59-67.	3.9	69
174	A Low-Temperature and Mild Solvothermal Route to the Synthesis of Wurtzite-Type ZnS With Single-Crystalline Nanoplate-like Morphology. Crystal Growth and Design, 2005, 5, 1761-1765.	1.4	68
175	Construction of Size-Controllable Hierarchical Nanoporous TiO2Ring Arrays and Their Modifications. Chemistry of Materials, 2006, 18, 3774-3779.	3.2	68
176	Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal, 2013, 219, 86-95.	6.6	68
177	Photo-Fenton degradation of malachite green catalyzed by aromatic compounds under visible light irradiation. New Journal of Chemistry, 2002, 26, 336-341.	1.4	67
178	Selected-Control Synthesis of NaV6O15 and Na2V6O16 $\hat{A}\cdot 3$ H2O Single-Crystalline Nanowires. Crystal Growth and Design, 2005, 5, 969-974.	1.4	67
179	WO3 Coupled P-TiO2 Photocatalysts with Mesoporous Structure. Catalysis Letters, 2010, 140, 172-183.	1.4	67
180	Induced Crystallization of Rubrene in Thinâ€Film Transistors. Advanced Materials, 2010, 22, 3242-3246.	11.1	67

#	Article	IF	CITATIONS
181	Porous TiO ₂ Materials through Pickering High-Internal Phase Emulsion Templating. Langmuir, 2014, 30, 2676-2683.	1.6	67
182	Synthesis and Characterization of Core-Shell Selenium/Carbon Colloids and Hollow Carbon Capsules. Chemistry - A European Journal, 2006, 12, 548-552.	1.7	66
183	An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation. Environmental Sciences: Processes and Impacts, 2014, 16, 1975-1980.	1.7	66
184	A Novel Î ² -CDâ^'Hemin Complex Photocatalyst for Efficient Degradation of Organic Pollutants at Neutral pHs under Visible Irradiation. Journal of Physical Chemistry B, 2003, 107, 9409-9414.	1.2	65
185	A robust three-dimensional mesoporous Ag/TiO2 nanohybrid film. Chemical Communications, 2005, , 2262.	2.2	64
186	Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments. Advanced Functional Materials, 2021, 31, 2006505.	7.8	64
187	Extraction of gold and mercury from sea water with bismuth diethyldithiocarbamate prior to neutron activation—γ-spectrometry. Analytica Chimica Acta, 1983, 154, 307-312.	2.6	63
188	Photoreaction of aromatic compounds at \hat{l}_{\pm} -FeOOH/H2O interface in the presence of H2O2: evidence for organic-goethite surface complex formation. Water Research, 2005, 39, 119-128.	5.3	63
189	A Meaningful Analogue of Pentacene: Charge Transport, Polymorphs, and Electronic Structures of Dihydrodiazapentacene. Chemistry of Materials, 2009, 21, 1400-1405.	3.2	63
190	Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy and Environmental Science, 2019, 12, 2185-2191.	15.6	61
191	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angewandte Chemie - International Edition, 2021, 60, 927-936.	7.2	61
192	Facile fabrication and characterization of hierarchically porous calcium carbonate microspheres. Chemical Communications, 2004, , 2414.	2.2	60
193	Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere, 2021, 278, 130376.	4.2	60
194	Magnetic Nanochains of FeNi ₃ Prepared by a Template-Free Microwave-Hydrothermal Method. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2579-2584.	4.0	59
195	Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon, 2005, 43, 670-673.	5.4	58
196	Photochemical Preparation of Two-Dimensional Gold Spherical Pore and Hollow Sphere Arrays on a Solution Surface. Angewandte Chemie - International Edition, 2007, 46, 773-777.	7.2	57
197	In situ synthesis of Zn2GeO4 hollow spheres and their enhanced photocatalytic activity for the degradation of antibiotic metronidazole. Dalton Transactions, 2013, 42, 5092.	1.6	57
198	A nanostructured chromium(iii) oxide/tungsten(vi) oxide p–n junction photoanode toward enhanced efficiency for water oxidation. Journal of Materials Chemistry A, 2015, 3, 14046-14053.	5.2	57

#	Article	IF	CITATIONS
199	Discrete Functional Gold Nanoparticles: Hydrogen Bond-Assisted Synthesis, Magnetic Purification, Supramolecular Dimer and Trimer Formation. ACS Nano, 2009, 3, 2129-2138.	7.3	56
200	Hierarchical core/shell Fe $3O4@SiO2@\hat{i}^3$ -AlOOH@Au micro/nanoflowers for protein immobilization. Chemical Communications, 2011, 47, 2514.	2.2	56
201	Sonochemical Preparation of Nanoporous Composites of Titanium Oxide and Size-Tunable Strontium Titanate Crystals. Langmuir, 2003, 19, 7673-7675.	1.6	55
202	Controlled Hydrothermal Synthesis and Growth Mechanism of Various Nanostructured Films of Copper and Silver Tellurides. Chemistry - A European Journal, 2006, 12, 4185-4190.	1.7	55
203	Preparation, characterization and photocatalytic performance of noble metals (Ag, Pd, Pt, Rh) deposited on sponge-like ZnO microcuboids. Journal of Physics and Chemistry of Solids, 2013, 74, 1714-1720.	1.9	55
204	Fabrication of a Photocatalyst with Biomass Waste for H ₂ O ₂ Synthesis. ACS Catalysis, 2021, 11, 14480-14488.	5 . 5	54
205	Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir, 2004, 20, 5865-9.	1.6	54
206	Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156, 235-241.	2.0	53
207	Peanut-shaped nanoribbon bundle superstructures of malachite and copper oxide. Journal of Crystal Growth, 2004, 266, 545-551.	0.7	53
208	Coating MWNTs with Cu2O of different morphology by a polyol process. Journal of Solid State Chemistry, 2005, 178, 1488-1494.	1.4	53
209	Aerosol-spray metal phosphide microspheres with bifunctional electrocatalytic properties for water splitting. Journal of Materials Chemistry A, 2018, 6, 4783-4792.	5.2	53
210	Graphitic carbon nitride nanosheet wrapped mesoporous titanium dioxide for enhanced photoelectrocatalytic water splitting. Catalysis Today, 2018, 315, 103-109.	2.2	53
211	Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 153, 211-219.	2.0	51
212	Photocytotoxicity and Magnetic Relaxivity Responses of Dual-Porous γ-Fe ₂ O ₃ @ <i>meso</i> >SiO ₂ Microspheres. ACS Applied Materials & Amp; Interfaces, 2012, 4, 2033-2040.	4.0	51
213	High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202382119.	3.3	51
214	Dithiocarbamate extraction of gallium from natural waters and from biological samples for neutron activation analysis. Analytical Chemistry, 1984, 56, 1689-1691.	3.2	50
215	Preparation of a highly active nanocrystalline TiO2 photocatalyst from titanium oxo cluster precursor. Journal of Solid State Chemistry, 2004, 177, 2584-2590.	1.4	50
216	Simultaneous Determination of Cobalt, Copper and Zinc by Energy Dispersive X-ray Fluorescence Spectrometry after Preconcentration on PAR-loaded Ion-Exchange Resin. Analytical Sciences, 2005, 21, 851-854.	0.8	50

#	Article	IF	CITATIONS
217	Microwave-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanocables. Chemical Communications, 2005, , 2704.	2.2	50
218	Nanoflower arrays of rutile TiO2. Chemical Communications, 2011, 47, 1184-1186.	2.2	50
219	An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates. Nanoscale, 2015, 7, 12614-12624.	2.8	49
220	Pt/Bi2WO6 composite microflowers: High visible light photocatalytic performance and easy recycle. Separation and Purification Technology, 2015, 154, 115-122.	3.9	49
221	oxide nanobelts from the commercial bulky particlesElectronic supplementary information (ESI) available: SEM images of commercial lithium manganese oxide bulky particles and the products synthesized under different conditions as well as lithium manganese oxide nanobelts, Se nanorods and MnO2 nanorods grown on the bulky particles and Te nanotubes. See	2.2	48
222	http://www.rsc.org/suppdata/cc/b3/b310998d/. Chemical Communications, 2003, , 2910. A simple approach to reactivate silver-coated titanium dioxide photocatalyst. Catalysis Communications, 2005, 6, 684-687.	1.6	48
223	Photochemical growth of cadmium-rich CdS nanotubes at the air–water interface and their use in photocatalysis. Journal of Materials Chemistry, 2009, 19, 6901.	6.7	48
224	Ultrasonic fabrication of N-doped TiO2 nanocrystals with mesoporous structure and enhanced visible light photocatalytic activity. Chinese Journal of Catalysis, 2013, 34, 1250-1255.	6.9	46
225	Synthesis and characterization of Ag/TiO2-B nanosquares with high photocatalytic activity under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 344-348.	1.7	45
226	Flow injection solid-phase chemiluminescent immunoassay using a membrane-based reactor. Analytical Chemistry, 1991, 63, 666-669.	3.2	44
227	Ultrasonic aerosol spray-assisted preparation of TiO2/In2O3 composite for visible-light-driven photocatalysis. Journal of Catalysis, 2014, 310, 84-90.	3.1	43
228	Room temperature synthesis of a highly active Cu/Cu ₂ 0 photocathode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 13736-13741.	5.2	43
229	Fabrication of hierarchical porous iron oxide films utilizing the Kirkendall effect. Chemical Communications, 2005, , 2683.	2.2	42
230	Mesoporous carbon/CuS nanocomposites for pH-dependent drug delivery and near-infrared chemo-photothermal therapy. RSC Advances, 2015, 5, 93226-93233.	1.7	42
231	Photocatalytic TiO2/Glass Nanoflake Array Films. Langmuir, 2005, 21, 3486-3492.	1.6	41
232	A nonstoichiometric SnO2â^'Î' nanocrystal-based counter electrode for remarkably improving the performance of dye-sensitized solar cells. Chemical Communications, 2014, 50, 7020.	2.2	41
233	An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency. Angewandte Chemie, 2016, 128, 9732-9737.	1.6	41
234	Meso- and macro-porous Pd/CexZr1–xO2 as novel oxidation catalysts. Journal of Materials Chemistry, 2005, 15, 2193.	6.7	40

#	Article	IF	Citations
235	Fe3+/Fe2+ cycling promoted by Ta3N5 under visible irradiation in Fenton degradation of organic pollutants. Applied Catalysis B: Environmental, 2007, 75, 256-263.	10.8	40
236	Photocatalytic activity and photo-induced hydrophilicity of mesoporous TiO2 thin films coated on aluminum substrate. Applied Catalysis B: Environmental, 2007, 73, 135-143.	10.8	40
237	Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO 0.6 S 0.4 with simultaneous dye degradation under visible-light irradiation. Chemosphere, 2017, 183, 219-228.	4.2	40
238	Polymeric membrane silver-ion selective electrodes based on bis(dialkyldithiophosphates). Analytica Chimica Acta, 2000, 416, 139-144.	2.6	39
239	Converting cellulose waste into a high-efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation. Applied Catalysis B: Environmental, 2021, 295, 120253.	10.8	39
240	Liquid bismuth initiated growth of phosphorus microbelts with efficient charge polarization for photocatalysis. Applied Catalysis B: Environmental, 2019, 247, 100-106.	10.8	38
241	Preparation of stable porous nickel and cobalt oxides using simple inorganic precursor, instead of alkoxides, by a sonochemical technique. Ultrasonics Sonochemistry, 2005, 12, 205-212.	3.8	36
242	Microwave-Assisted Synthesis of a Superparamagnetic Surface-Functionalized Porous Fe3O4/C Nanocomposite. Chemistry - an Asian Journal, 2006, 1, 605-610.	1.7	36
243	Cu(In,Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO. Journal of Catalysis, 2020, 384, 88-95.	3.1	36
244	Cross-Medal Arrays of Ta-Doped Rutile Titania. Journal of the American Chemical Society, 2009, 131, 12048-12049.	6.6	35
245	Lanthanide stannate pyrochlores Ln2Sn2O7 (Ln=Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: Synthesis, characterization, and photocatalytic properties. Materials Research Bulletin, 2014, 56, 86-91.	2.7	35
246	A mild solvothermal route for preparation of cubic-like CuInS2 crystals. Materials Letters, 2009, 63, 1984-1986.	1.3	34
247	Interfacing Iodineâ€Doped Hydrothermally Carbonized Carbon with <i>Escherichia coli</i> through an "Addâ€on―Mode for Enhanced Lightâ€Driven Hydrogen Production. Advanced Energy Materials, 2021, 11, 2100291.	10.2	34
248	Semiconductor olefin adducts. Photoluminescent properties of cadmium sulfide and cadmium selenide in the presence of butenes. Journal of the American Chemical Society, 1989, 111, 5146-5148.	6.6	33
249	Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation. Chemical Communications, 2003, , 80-81.	2.2	33
250	Microwave hydrothermal synthesis of MSnO3 (M2+Â=ÂCa2+, Sr2+, Ba2+): effect of M2+ on crystal structure and photocatalytic properties. Journal of Materials Science, 2014, 49, 1893-1902.	1.7	33
251	Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue. Separation and Purification Technology, 2012, 91, 103-107.	3.9	32
252	Synthesis of Size-Tunable Monodispersed Metallic Nickel Nanocrystals without Hot Injection. Crystal Growth and Design, 2009, 9, 2812-2815.	1.4	31

#	Article	IF	Citations
253	A visible-light-driven composite photocatalyst of TiO ₂ nanotube arrays and graphene quantum dots. Beilstein Journal of Nanotechnology, 2014, 5, 689-695.	1.5	31
254	Separation and determination of Cr(III) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2001, 436, 59-67.	2.6	30
255	Title is missing!. Angewandte Chemie, 2003, 115, 1059-1062.	1.6	30
256	Intrinsic defect based homojunction: A novel quantum dots photoanode with enhanced charge transfer kinetics. Applied Catalysis B: Environmental, 2017, 203, 829-838.	10.8	30
257	Free-standing red phosphorous/silver sponge monolith as an efficient and easily recyclable macroscale photocatalyst for organic pollutant degradation under visible light irradiation. Journal of Colloid and Interface Science, 2018, 518, 130-139.	5.0	30
258	Facile synthesis of carbon- and oxygen-rich graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catalysis Today, 2018, 310, 26-31.	2.2	30
259	Treated rape pollen: a metal-free visible-light-driven photocatalyst from nature for efficient water disinfection. Journal of Materials Chemistry A, 2019, 7, 9335-9344.	5.2	30
260	Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy and Environmental Science, 2022, 15, 529-549.	15.6	30
261	Atomic Force Microscopic Studies of Porous TiO2 Thin Films Prepared by the Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2002, 24, 229-240.	1.1	29
262	Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide. Materials Chemistry and Physics, 2006, 98, 267-272.	2.0	29
263	Loading Metal Nanostructures on Cotton Fabrics as Recyclable Catalysts. Small, 2013, 9, 1003-1007.	5.2	29
264	Assembly of polyethylenimine-functionalized iron oxide nanoparticles as agents for DNA transfection with magnetofection technique. Journal of Materials Chemistry B, 2014, 2, 7936-7944.	2.9	29
265	Oxide Monoliths and Films with Unusual Long-Range Highly Ordered Lamellar Structures. Advanced Materials, 2002, 14, 1064.	11.1	28
266	Growth of single-crystalline SnO ₂ nanocubes via a hydrothermal route. CrystEngComm, 2010, 12, 341-343.	1.3	28
267	A highly selective photooxidation approach using O2 in water catalyzed by iron(ii) bipyridine complex supported on NaY zeolite. Chemical Communications, 2003, , 2214.	2.2	27
268	A wide-spectrum-responsive TiO 2 photoanode for photoelectrochemical cells. Applied Catalysis B: Environmental, 2015, 168-169, 483-489.	10.8	27
269	Efficient Electronic Transport in Partially Disordered Co ₃ O ₄ Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 3071-3081.	2.5	27
270	Simultaneous determination of inorganic anions, carboxylic and aromatic carboxylic acids by capillary zone electrophoresis with direct UV detection. Journal of Chromatography A, 2002, 942, 289-294.	1.8	26

#	Article	IF	Citations
271	Facet effect of copper(I) sulfide nanocrystals on photoelectrochemical properties. Progress in Natural Science: Materials International, 2012, 22, 585-591.	1.8	26
272	WO3/TiO2 microstructures for enhanced photocatalytic oxidation. Separation and Purification Technology, 2012, 91, 67-72.	3.9	26
273	Direct observation of carbon nanostructure growth at liquid–solid interfaces. Chemical Communications, 2014, 50, 826-828.	2.2	25
274	Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation. Nanoscale, 2015, 7, 10896-10902.	2.8	25
275	Progress in sonochemical fabrication of nanostructured photocatalysts. Rare Metals, 2016, 35, 211-222.	3.6	25
276	Hierarchical mesoporous grape-like titania with superior recyclability and photoactivity. Microporous and Mesoporous Materials, 2007, 106, 278-283.	2.2	24
277	A mesoporous TiO2â^xNx photocatalyst prepared by sonication pretreatment and in situ pyrolysis. Separation and Purification Technology, 2009, 67, 152-157.	3.9	24
278	Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: A density functional theory study. Journal of Colloid and Interface Science, 2014, 430, 18-23.	5.0	24
279	A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus. Journal of Environmental Sciences, 2017, 60, 91-97.	3.2	24
280	Determination of total gaseous selenium in atmosphere by honeycomb denuder/differential pulse cathodic stripping voltammetry. Talanta, 2002, 57, 323-331.	2.9	23
281	Onâ€Demand Synthesis of H ₂ O ₂ by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation. Angewandte Chemie, 2020, 132, 20719-20725.	1.6	23
282	Simultaneous Determination of Inorganic Anions and Organic Acids in Environmental Samples by Capillary Zone Electrophoresis with Indirect UV Detection. Journal of High Resolution Chromatography, 1999, 22, 379-385.	2.0	22
283	Hierarchically Ordered Silica Mesophases Using Mixed Surfactant Systems as Templates. Angewandte Chemie - International Edition, 2002, 41, 3844-3848.	7.2	21
284	Preconcentration using diethylenetriaminetetraacetic acid-functionalized polysiloxane (DETAP) for determination of molybdenum(VI) in seawater by ICP?OES. Analytical and Bioanalytical Chemistry, 2003, 376, 728-734.	1.9	21
285	Ultra-fast method to synthesize mesoporous magnetite nanoclusters as highly sensitive magnetic resonance probe. Journal of Colloid and Interface Science, 2012, 379, 1-7.	5.0	21
286	A Facile Surface-Etching Route to Thin Films of Metal Iodides. Crystal Growth and Design, 2007, 7, 262-267.	1.4	20
287	Direct encoding of silica submicrospheres with cadmium telluride nanocrystals. Journal of Materials Chemistry, 2009, 19, 7002.	6.7	20
288	Vertically aligned CdTe nanotube arrays on indium tin oxide for visible-light-driven photoelectrocatalysis. Applied Catalysis B: Environmental, 2014, 147, 17-21.	10.8	20

#	Article	IF	Citations
289	The preparation of a highly ordered long-range lamellar silica structure with large interlayer spacingsElectronic supplementary information (ESI) available: Figs. S1–3: XRD, adsorption–desorption isotherms and SEM image. See http://www.rsc.org/suppdata/cc/b2/b204053k/. Chemical Communications, 2002, 1614-1615.	2.2	19
290	Synthesis of surface-functionalized t-Se microspheres via a green wet-chemical route. Journal of Materials Chemistry, 2006, 16, 748-751.	6.7	19
291	Continuous Formation of Supported Unusual Mesostructured Silica Films by Solâ^'Gel Dip Coating. Langmuir, 2002, 18, 9570-9573.	1.6	18
292	Preparation, Characterization and Photocatalytic Performance of Ag/BiOX (X=Cl, Br, I) Composite Photocatalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 647-653.	2.2	18
293	Photocatalytic Degradation of a Gaseous Organic Pollutant. Journal of Chemical Education, 1998, 75, 750.	1.1	16
294	Preparation and characterization of highly photoactive nanocrystalline TiO2 powders by solvent evaporation-induced crystallization method. Science in China Series B: Chemistry, 2003, 46, 549.	0.8	16
295	Influence of solvation interactions on the zeta potential of titania powders. Journal of Colloid and Interface Science, 2003, 262, 97-100.	5.0	16
296	Large-scale in situ synthesis and characterization of ternary single-crystal NaV6O15 nanoneedles. Materials Chemistry and Physics, 2007, 104, 362-366.	2.0	16
297	The sonochemical preparation of a mesoporous NiO/yttria stabilized zirconia composite. Microporous and Mesoporous Materials, 2003, 60, 91-97.	2.2	15
298	Hydrothermal Synthesis and Photocatalytic Performance of Bi ₂ WO ₆ /ZnO Heterojunction Photocatalysts. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1157-1163.	0.6	15
299	Hetero-phase dendritic elemental phosphorus for visible light photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 312, 121428.	10.8	15
300	Facile Decoring Route to Carbon Nano Test Tubes. Journal of Physical Chemistry C, 2007, 111, 5830-5834.	1.5	14
301	Redox-responsive controlled DNA transfection and gene silencing based on polymer-conjugated magnetic nanoparticles. RSC Advances, 2016, 6, 72155-72164.	1.7	14
302	Hydrogen Peroxide Production from Water Oxidation on a CuWO ₄ Anode in Oxygen-Deficient Conditions for Water Decontamination. ACS Applied Materials & Enterfaces, 2022, 14, 7878-7887.	4.0	14
303	Simultaneous photocatalytic removal of ammonium and nitrite in water using Ce3+–Ag+ modified TiO2. Separation and Purification Technology, 2009, 67, 244-248.	3.9	13
304	Photocatalysts for Solar-Induced Water Disinfection: New Developments and Opportunities. Materials Science Forum, 0, 734, 63-89.	0.3	13
305	Visible-light photocatalysis and charge carrier dynamics of elemental crystalline red phosphorus. Journal of Chemical Physics, 2020, 153, 024707.	1.2	13
306	ION CHROMATOGRAPHIC SEPARATION OF ANIONS AND CATIONS ON A TITANIA PACKED COLUMN. Journal of Liquid Chromatography and Related Technologies, 2001, 24, 367-380.	0.5	12

#	Article	IF	Citations
307	Nonaggregated Zinc Phthalocyanine in Mesoporous Nanocrystalline TiO2 Thin Films. Macromolecular Rapid Communications, 2004, 25, 1414-1418.	2.0	12
308	Soft nanohand grabs a growing nanoparticle. Materials Chemistry Frontiers, 2019, 3, 1555-1564.	3.2	12
309	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angewandte Chemie, 2021, 133, 940-949.	1.6	12
310	Separation and Detection of Metal Ions in Ecological Samples by Capillary Zone Electrophoresis with Indirect UV Detection. Journal of High Resolution Chromatography, 2000, 23, 511-514.	2.0	10
311	On the Origin of the Visibleâ€Light Activity of Titanium Dioxide Doped with Carbonate Species. ChemPhysChem, 2010, 11, 3269-3272.	1.0	10
312	Speciation and distribution of trihalomethanes in the drinking water of Hong Kong. Environment International, 1999, 25, 605-611.	4.8	9
313	Synthesize of Cu2O-CuO/Sr3BiO5.4 and its photocatalytic activity. Applied Surface Science, 2012, 258, 5955-5959.	3.1	9
314	Electronic Optimization by Coupling FeCo Nanoclusters and Pt Nanoparticles to Carbon Nanotubes for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5895-5901.	3.2	9
315	Determination of lead in fine particulates by slurry sampling electrothermal atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry, 2001, 369, 170-175.	1.5	8
316	A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Research, 2008, 1, 474-482.	5.8	8
317	Porous upconversion materials-assisted near infrared energy harvesting by chlorophylls. Chemical Communications, 2011, 47, 3511.	2.2	8
318	Preparation and biomedical application of a non-polymer coated superparamagnetic nanoparticle. International Journal of Nanomedicine, 2007, 2, 805-12.	3.3	8
319	Potentiometric detection of ascorbate using a graphite carbon electrode. Talanta, 1999, 49, 661-665.	2.9	7
320	Comparison of Photocatalytic Oxidation and Ozonation in Degrading of Polycyclic Aromatic Hydrocarbons. Human and Ecological Risk Assessment (HERA), 2006, 12, 270-276.	1.7	7
321	Essential oil composition of the needles of Abies nephrolepis Maxim from China. Flavour and Fragrance Journal, 2005, 20, 534-536.	1.2	6
322	Monosteps on the Surfaces of Mesostructured Silica and Titania Thin Films. Small, 2010, 6, 1880-1885.	5.2	6
323	Advanced Photocatalytic Nanomaterials for Degrading Pollutants and Generating Fuels by Sunlight. Green Energy and Technology, 2011, , 679-716.	0.4	6
324	Azobenzene dendronized carbon nanoparticles: the effect of light antenna. RSC Advances, 2014, 4, 18193-18197.	1.7	6

#	Article	IF	CITATIONS
325	Gaining Hands-On Experience with Solid-State Photovoltaics through Constructing a Novel n-Si/CuS Solar Cell. Journal of Chemical Education, 2017, 94, 476-479.	1.1	6
326	Direct Hydrogen Peroxide Synthesis on a Sn-doped CuWO ₄ /Sn Anode and an Air-Breathing Cathode. Chemistry of Materials, 2022, 34, 63-71.	3.2	6
327	Direct determination of mercury in atmospheric particulate matter by graphite plate filtration–electrothermal atomic absorption spectrometry with Zeeman background correction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 395-402.	1.5	4
328	The sonochemical preparation of lamellar MoOx. Journal of Materials Chemistry, 2003, 13, 2851.	6.7	4
329	Fibrous TiO2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption, hydrolysis and calcinations. Journal of Zhejiang University: Science A, 2008, 9, 981-987.	1.3	4
330	Induced Crystallization of Rubrene in Thinâ€Film Transistors (Adv. Mater. 30/2010). Advanced Materials, 2010, 22, .	11.1	4
331	Photocatalytic Property of Phosphorus. ACS Symposium Series, 2019, , 155-177.	0.5	3
332	Determination of Manganese (II) in Foodstuffs by \hat{l}^2 -Cyclodextrin Polymer Phase Spectrophotometry with 1-(2-Pyridylazo)-2-naphthol. Supramolecular Chemistry, 2002, 14, 373-378.	1.5	2
333	DETERMINATION OF COBALT IN FOODS BY Î ² -CYCLODEXTRIN POLYMER PHASE SPECTROPHOTOMETRY USING 2-(5-BROMO-2-PYRIDYLAZO)-5-DIETHYLAMINOPHENOL. Analytical Letters, 2002, 35, 825-835.	1.0	2
334	Preparation of a highly active nanocrystalline TiO2 photocatalyst from titanium oxo cluster precursor. Journal of Solid State Chemistry, 2004, 177, 2584-2584.	1.4	2
335	Hydrothermal Synthesis of a Novel Sodium Vanadium Bronze with Single-crystalline Nanobelt-like Morphology. Chemistry Letters, 2004, 33, 1612-1613.	0.7	2
336	Determination of Total Gaseous Lead in the Atmosphere by Honeycomb Denuder/Electrothermal Atomic Absorption Spectrometry. Analytical Sciences, 2005, 21, 1031-1036.	0.8	2
337	Biomimetic Synthesis of CaCO ₃ Particles with Specific Size and Morphology. Key Engineering Materials, 2005, 280-283, 601-604.	0.4	2
338	A Novel Intermediate-Sacrificed Route to Polycrystalline Nanorods Consisting of Highly Oriented Quantum Dots of Cubic CdS. Journal of Nanoscience and Nanotechnology, 2008, 8, 3112-3116.	0.9	2
339	Innenr $\tilde{A}^{1}\!\!/\!\!$ cktitelbild: An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency (Angew. Chem. 33/2016). Angewandte Chemie, 2016, 128, 9947-9947.	1.6	2
340	Nanostructured Elemental Photocatalysts: Development and Challenges. Nanostructure Science and Technology, 2016, , 295-312.	0.1	2
341	Dressing Plasmons in Nanoparticle-in-Quasi-Cavity Architectures for Trace-Level Surface-Enhanced Raman Spectroscopy Detection. ACS Applied Nano Materials, 2021, 4, 152-158.	2.4	2
342	Highly selective photocatalytic synthesis of ethylene-derived commodity chemicals on BiOBr nanosheets. Materials Today Physics, 2021, 21, 100551.	2.9	2

#	Article	IF	CITATIONS
343	Simultaneous determination of Co(II), Cr(VI), Ni(II) and Pb(II) in water by solvent extraction and high-field 1 H NMR Spectrometry. Fresenius' Journal of Analytical Chemistry, 1998, 361, 210-213.	1.5	1
344	Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires ChemInform, 2004, 35, no.	0.1	1
345	Potassium ion-mediated synthesis of highly water-soluble dendritically functionalized melanins. New Journal of Chemistry, 2014, 38, 3362.	1.4	1
346	Metallic Photocatalysts: Enhancing Charge Separation in Metallic Photocatalysts: A Case Study of the Conducting Molybdenum Dioxide (Adv. Funct. Mater. 25/2016). Advanced Functional Materials, 2016, 26, 4444-4444.	7.8	1
347	Photocatalysis: Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis (Adv. Funct. Mater. 46/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
348	Preparation, characterization, and photocatalytic properties of Pt/BiOCl nanoplates. Chinese Journal of Catalysis, 2014, 34, 385-390.	6.9	1
349	Electromagnetic Induction in Inductively Coupled Plasma. Journal of Chemical Education, 1998, 75, 316.	1.1	0
350	Microemulsion-Mediated Solvothermal Synthesis of Nanosized CdS-Sensitized TiO2 Crystalline Photocatalyst ChemInform, 2003, 34, no.	0.1	0
351	A Self-Seeded, Surfactant-Directed Hydrothermal Growth of Single Crystalline Lithium Manganese Oxide Nanobelts from the Commercial Bulky Particles ChemInform, 2004, 35, no.	0.1	0
352	Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films ChemInform, 2004, 35, no.	0.1	0
353	Sonochemical Synthesis of Aragonite-Type Calcium Carbonate with Different Morphologies ChemInform, 2004, 35, no.	0.1	0
354	Porous Sr2CuWO6 Nanoarchitectures Fabricated by a Matrix-mediated Route. Chemistry Letters, 2009, 38, 320-321.	0.7	0
355	VIRTUAL CLASSROOM AS A TOOL FOR ENVIRONMENTAL EDUCATION. , 2000, , .		O