Veronica Augustyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2339548/publications.pdf

Version: 2024-02-01

43 papers

13,020 citations

236925 25 h-index 289244 40 g-index

46 all docs

46 docs citations

46 times ranked

13280 citing authors

#	Article	IF	CITATIONS
1	Electrochemical proton insertion modulates the hydrogen evolution reaction on tungsten oxides. Journal of Chemical Physics, 2022, 156, 064704.	3.0	10
2	Critical Role of Structural Water for Enhanced Li ⁺ Insertion Kinetics in Crystalline Tungsten Oxides. Journal of the Electrochemical Society, 2022, 169, 030534.	2.9	7
3	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nature Energy, 2022, 7, 222-228.	39.5	130
4	Electrochemical reactivity of atomic and molecular species under solid-state confinement. Current Opinion in Electrochemistry, 2022, 34, 101014.	4.8	2
5	Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy, 2021, 81, 105592.	16.0	23
6	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Advanced Functional Materials, 2021, 31, 2104007.	14.9	64
7	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170246.	14.9	2
8	Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nature Materials, 2021, 20, 1689-1694.	27.5	119
9	Understanding electrochemical cation insertion into prussian blue from electrode deformation and mass changes. Chemical Communications, 2021, 57, 6744-6747.	4.1	9
10	Fast Proton Insertion in Layered H ₂ W ₂ O ₇ via Selective Etching of an Aurivillius Phase. Advanced Energy Materials, 2021, 11, .	19.5	16
11	Decoupling Proton and Cation Contributions to Capacitive Charge Storage in Birnessite in Aqueous Electrolytes. ChemElectroChem, 2021, 8, 4371-4379.	3.4	6
12	Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. Journal of Materials Chemistry A, 2020, 8, 412-421.	10.3	28
13	Sulfidation and selenidation of nickel nanoparticles. , 2020, 3, 582.		10
14	Deformation during Electrosorption and Insertion-Type Charge Storage: Origins, Characterization, and Design of Materials for High Power. ACS Energy Letters, 2020, 5, 3548-3559.	17.4	8
15	Effect of water in a non-aqueous electrolyte on electrochemical Mg2+ insertion into WO3. Journal of Power Sources, 2020, 477, 229015.	7.8	18
16	Frontiers in hybrid and interfacial materials chemistry research. MRS Bulletin, 2020, 45, 951-964.	3.5	6
17	High Power Energy Storage via Electrochemically Expanded and Hydrated Manganese-Rich Oxides. Frontiers in Chemistry, 2020, 8, 715.	3.6	5
18	Electrochemical Reactivity under Confinement Enabled by Molecularly Pillared 2D and Layered Materials. Chemistry of Materials, 2020, 32, 3325-3334.	6.7	32

#	Article	IF	Citations
19	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	47.7	1,020
20	Free-standing transition metal oxide electrode architectures for electrochemical energy storage. Journal of Materials Science, 2019, 54, 13045-13069.	3.7	20
21	Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. ACS Energy Letters, 2019, 4, 2805-2812.	17.4	88
22	Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorganic Chemistry Frontiers, 2018, 5, 999-1015.	6.0	57
23	Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes. Journal of Materials Chemistry A, 2018, 6, 22266-22276.	10.3	22
24	Toward an Atomistic Understanding of Solid-State Electrochemical Interfaces for Energy Storage. Joule, 2018, 2, 2189-2193.	24.0	29
25	Acquisition of a microscope for in situ studies of hard and soft matter. Microscopy and Microanalysis, 2018, 24, 2332-2333.	0.4	0
26	<i>Operando</i> Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition. ACS Nano, 2018, 12, 6032-6039.	14.6	50
27	Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide. Chemistry of Materials, 2017, 29, 3928-3937.	6.7	175
28	Intrinsic limitations of atomic layer deposition for pseudocapacitive metal oxides in porous electrochemical capacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 13086-13097.	10.3	15
29	Tuning the interlayer of transition metal oxides for electrochemical energy storage. Journal of Materials Research, 2017, 32, 2-15.	2.6	67
30	2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage. Joule, 2017, 1, 443-452.	24.0	104
31	Electrochemical Intercalation of Mg ²⁺ into Anhydrous and Hydrated Crystalline Tungsten Oxides. Langmuir, 2017, 33, 9314-9323.	3.5	57
32	Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide Nanosheets. Chemistry of Materials, 2017, 29, 7794-7807.	6.7	28
33	Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy and Environmental Science, 2014, 7, 1597.	30.8	4,223
34	Electrochemical Kinetics of Nanostructured Nb ₂ O ₅ Electrodes. Journal of the Electrochemical Society, 2014, 161, A718-A725.	2.9	235
35	Lithium-ion storage properties of titanium oxide nanosheets. Materials Horizons, 2014, 1, 219-223.	12.2	70
36	Nanostructured Pseudocapacitors Based on Atomic Layer Deposition of V ₂ O ₅ onto Conductive Nanocrystalâ€based Mesoporous ITO Scaffolds. Advanced Functional Materials, 2014, 24, 6717-6728.	14.9	76

#	Article	IF	CITATIONS
37	Enhancing Pseudocapacitive Charge Storage in Polymer Templated Mesoporous Materials. Accounts of Chemical Research, 2013, 46, 1113-1124.	15.6	254
38	High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12, 518-522.	27.5	4,021
39	New Porous Crystals of Extended Metal-Catecholates. Chemistry of Materials, 2012, 24, 3511-3513.	6.7	618
40	The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb ₂ O ₅ . Advanced Energy Materials, 2012, 2, 141-148.	19.5	461
41	Highâ€Performance Supercapacitors Based on Intertwined CNT/V ₂ O ₅ Nanowire Nanocomposites. Advanced Materials, 2011, 23, 791-795.	21.0	788
42	Vanadium oxide aerogels: Nanostructured materials for enhanced energy storage. Comptes Rendus Chimie, 2010, 13, 130-141.	0.5	42
43	Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams. Energy &	5.1	3