

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2338853/publications.pdf Version: 2024-02-01

Ζιχιι Μλο

#	Article	IF	CITATIONS
1	Chaperoneâ€mediated autophagy degrades Keap1 and promotes Nrf2â€mediated antioxidative response. Aging Cell, 2022, 21, e13616.	6.7	19
2	Chaperone-mediated autophagy controls the turnover of E3 ubiquitin ligase MARCHF5 and regulates mitochondrial dynamics. Autophagy, 2021, 17, 2923-2938.	9.1	26
3	p38 MAPKâ€mediated loss of nuclear RNase III enzyme Drosha underlies amyloid betaâ€induced neuronal stress in Alzheimer's disease. Aging Cell, 2021, 20, e13434.	6.7	14
4	Regulatory coupling between long noncoding RNAs and senescence in irradiated microglia. Journal of Neuroinflammation, 2020, 17, 321.	7.2	4
5	The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Translational Neurodegeneration, 2020, 9, 17.	8.0	89
6	Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiology of Disease, 2019, 122, 41-48.	4.4	28
7	p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. Journal of Cell Biology, 2018, 217, 315-328.	5.2	202
8	Signaling and induction of chaperone-mediated autophagy by the endoplasmic reticulum under stress conditions. Autophagy, 2018, 14, 1-3.	9.1	27
9	Release the autophage brake on inflammation: The MAPK14/p38α-ULK1 pedal. Autophagy, 2018, 14, 1-2.	9.1	17
10	Loss of Drosha underlies dopaminergic neuron toxicity in models of Parkinson's disease. Cell Death and Disease, 2018, 9, 693.	6.3	11
11	Autophagy in inflammation: the p38Î \pm MAPK-ULK1 axis. Macrophage, 2018, 5, .	1.0	2
12	Study of ATM Phosphorylation by Cdk5 in Neuronal Cells. Methods in Molecular Biology, 2017, 1599, 363-374.	0.9	4
13	Endoplasmic reticulum stress mediates distinct impacts of sevoflurane on different subfields of immature hippocampus. Journal of Neurochemistry, 2017, 142, 272-285.	3.9	28
14	Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nature Communications, 2017, 8, 1763.	12.8	97
15	Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death and Disease, 2016, 7, e2563-e2563.	6.3	58
16	Naturally Existing Oncolytic Virus M1 Is Nonpathogenic for the Nonhuman Primates After Multiple Rounds of Repeated Intravenous Injections. Human Gene Therapy, 2016, 27, 700-711.	2.7	37
17	Stress Induces p38 MAPK-Mediated Phosphorylation and Inhibition of Drosha-Dependent Cell Survival. Molecular Cell, 2015, 57, 721-734.	9.7	72
18	Chaperone-mediated autophagy: roles in neurodegeneration. Translational Neurodegeneration, 2014, 3, 20.	8.0	29

Ζιχυ Μλο

#	Article	IF	CITATIONS
19	De novo mutation in ATP6V1B2 impairs lysosome acidification and causes dominant deafness-onychodystrophy syndrome. Cell Research, 2014, 24, 1370-1373.	12.0	52
20	Perturbation of Transcription Factor Nur77 Expression Mediated by Myocyte Enhancer Factor 2D (MEF2D) Regulates Dopaminergic Neuron Loss in Response to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Journal of Biological Chemistry, 2013, 288, 14362-14371.	3.4	26
21	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
22	Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cellular and Molecular Life Sciences, 2011, 68, 749-763.	5.4	106
23	Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. Journal of Clinical Investigation, 2011, 121, 930-940.	8.2	155
24	The Question of Cell Cycle Reentry by Mature Neurons in Response to Amyloid-β and Tau Pathology. Journal of Alzheimer's Disease, 2009, 17, 49-51.	2.6	1
25	Calcineurin Enhances MEF2 DNA Binding Activity in Calcium-dependent Survival of Cerebellar Granule Neurons. Journal of Biological Chemistry, 1999, 274, 31102-31107.	3.4	135