Stefania Cannito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2338739/publications.pdf

Version: 2024-02-01

43 papers

2,714 citations

236925 25 h-index 265206 42 g-index

43 all docs

43 docs citations

times ranked

43

4173 citing authors

#	Article	IF	CITATIONS
1	Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells. Carcinogenesis, 2008, 29, 2267-2278.	2.8	274
2	Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 2008, 57, 223-231.	12.1	248
3	Epithelial–Mesenchymal Transition: From Molecular Mechanisms, Redox Regulation to Implications in Human Health and Disease. Antioxidants and Redox Signaling, 2010, 12, 1383-1430.	5 . 4	226
4	Proangiogenic Cytokines as Hypoxia-Dependent Factors Stimulating Migration of Human Hepatic Stellate Cells. American Journal of Pathology, 2007, 170, 1942-1953.	3.8	196
5	Cellular and molecular mechanisms in liver fibrogenesis. Archives of Biochemistry and Biophysics, 2014, 548, 20-37.	3.0	177
6	Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut, 2005, 55, 1174-1182.	12.1	143
7	Liver fibrosis: a dynamic and potentially reversible process. Histology and Histopathology, 2010, 25, 1075-91.	0.7	110
8	Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. Journal of Hepatology, 2011, 54, 964-974.	3.7	109
9	Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opinion on Therapeutic Targets, 2014, 18, 121-135.	3.4	102
10	Hepatic myofibroblasts: A heterogeneous population of multifunctional cells in liver fibrogenesis. International Journal of Biochemistry and Cell Biology, 2009, 41, 2089-2093.	2.8	87
11	Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells. Gut, 2006, 55, 90-97.	12.1	78
12	SERPINB3 induces epithelial–mesenchymal transition. Journal of Pathology, 2010, 221, 343-356.	4.5	77
13	ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis. International Journal of Molecular Sciences, 2019, 20, 2700.	4.1	72
14	The biphasic nature of hypoxiaâ€induced directional migration of activated human hepatic stellate cells. Journal of Pathology, 2012, 226, 588-597.	4.5	71
15	Hypoxiaâ€inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidineâ€rich glycoprotein. Hepatology, 2018, 67, 2196-2214.	7.3	66
16	Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget, 2015, 6, 2206-2221.	1.8	59
17	The mitogen-activated protein kinase ERK5 regulates the development and growth of hepatocellular carcinoma. Gut, 2015, 64, 1454-1465.	12.1	58
18	Dissection of the Biphasic Nature of Hypoxia-Induced Motogenic Action in Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells, 2011, 29, 952-963.	3.2	51

#	Article	IF	CITATIONS
19	Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Advanced Drug Delivery Reviews, 2017, 121, 57-84.	13.7	51
20	Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS ONE, 2017, 12, e0172575.	2.5	49
21	Hypoxia, hypoxia-inducible factors and fibrogenesis in chronic liver diseases. Histology and Histopathology, 2014, 29, 33-44.	0.7	37
22	Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells, 2021, 10, 1764.	4.1	35
23	Effects of the rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer cell lines. Toxicology in Vitro, 2018, 46, 9-18.	2.4	34
24	Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties. Journal of Colloid and Interface Science, 2018, 516, 484-497.	9.4	33
25	SerpinB3 and Yap Interplay Increases Myc Oncogenic Activity. Scientific Reports, 2016, 5, 17701.	3.3	31
26	Celecoxib inactivates epithelial–mesenchymal transition stimulated by hypoxia and/or epidermal growth factor in colon cancer cells. Molecular Carcinogenesis, 2012, 51, 783-795.	2.7	30
27	Oncostatin M, A Profibrogenic Mediator Overexpressed in Non-Alcoholic Fatty Liver Disease, Stimulates Migration of Hepatic Myofibroblasts. Cells, 2020, 9, 28.	4.1	26
28	SerpinB3 Promotes Pro-fibrogenic Responses in Activated Hepatic Stellate Cells. Scientific Reports, 2017, 7, 3420.	3.3	23
29	SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1α and -2α in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers, 2019, 11, 1933.	3.7	22
30	Fibroinflammatory Liver Injuries as Preneoplastic Condition in Cholangiopathies. International Journal of Molecular Sciences, 2018, 19, 3875.	4.1	21
31	Hepatic myofibroblasts and fibrogenic progression of chronic liver diseases. Histology and Histopathology, 2015, 30, 1011-32.	0.7	18
32	$ ilde{A} ilde{Y} ext{-}Catenin$ triggers nuclear factor ?B-dependent up-regulation of hepatocyte inducible nitric oxide synthase. International Journal of Biochemistry and Cell Biology, 2008, 40, 1861-1871.	2.8	17
33	Liver fibrogenesis: un update on established and emerging basic concepts. Archives of Biochemistry and Biophysics, 2020, 689, 108445.	3.0	15
34	Hyaluronated and PEGylated Liposomes as a Potential Drug-Delivery Strategy to Specifically Target Liver Cancer and Inflammatory Cells. Molecules, 2022, 27, 1062.	3.8	14
35	Hepatocyte-Specific Deletion of HIF2α Prevents NASH-Related Liver Carcinogenesis by Decreasing Cancer Cell Proliferation. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 459-482.	4.5	13
36	Oncostatin <scp>M</scp> is overexpressed in <scp>NASH</scp> â€related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. Journal of Pathology, 2022, 257, 82-95.	4.5	12

#	Article	IF	CITATION
37	SerpinB3 as a Pro-Inflammatory Mediator in the Progression of Experimental Non-Alcoholic Fatty Liver Disease. Frontiers in Immunology, 0, 13 , .	4.8	9
38	Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis. Antioxidants, 2022, 11, 1278.	5.1	8
39	Hepatic Angiogenesis and Fibrogenesis in the Progression of Chronic Liver Diseases. Current Angiogenesis, 2013, 2, 23-29.	0.1	3
40	GPR21 Inhibition Increases Glucose-Uptake in HepG2 Cells. International Journal of Molecular Sciences, 2021, 22, 10784.	4.1	3
41	G protein–coupled receptor 21 in macrophages: An in vitro study. European Journal of Pharmacology, 2022, 926, 175018.	3.5	3
42	Serpinb3 is Overexpressed in the Liver in Presence of Iron Overload. Journal of Investigative Medicine, 2018, 66, 32-38.	1.6	2
43	In vivo reprogramming of hepatic myofibroblasts into hepatocytes attenuates liver fibrosis: back to the future?. Stem Cell Investigation, 2016, 3, 53-53.	3.0	1