
Tony Lefebvre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2338515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer. Oncogene, 2022, 41, 745-756.	5.9	12
2	Evaluation of the expression of fatty acid synthase and <i>O</i> â€GlcNAc transferase in patients with liver cancer by exploration of transcriptome databases and experimental approaches. Oncology Letters, 2022, 23, 105.	1.8	2
3	L'acide gras synthase, une enzyme «Âmulti-FASette». Medecine/Sciences, 2022, 38, 445-452.	0.2	3
4	Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells. Cellular and Molecular Life Sciences, 2021, 78, 5397-5413.	5.4	30
5	O-GlcNAcylation Prediction: An Unattained Objective. Advances and Applications in Bioinformatics and Chemistry, 2021, Volume 14, 87-102.	2.6	5
6	Mitochondrial O-GlcNAc Transferase Interacts with and Modifies Many Proteins and Its Up-Regulation Affects Mitochondrial Function and Cellular Energy Homeostasis. Cancers, 2021, 13, 2956.	3.7	19
7	Exploring the Potential of \hat{l}^2 -Catenin O-GlcNAcylation by Using Fluorescence-Based Engineering and Imaging. Molecules, 2020, 25, 4501.	3.8	11
8	Identification of lipid raft glycoproteins obtained from boar spermatozoa. Glycoconjugate Journal, 2020, 37, 499-509.	2.7	6
9	OGT Controls the Expression and the Glycosylation of E adherin, and Affects Glycosphingolipid Structures in Human Colon Cell Lines. Proteomics, 2019, 19, e1800452.	2.2	11
10	O-GlcNAcylation Is Involved in the Regulation of Stem Cell Markers Expression in Colon Cancer Cells. Frontiers in Endocrinology, 2019, 10, 289.	3.5	16
11	Identification of O-Glcnacylated Proteins in Trypanosoma cruzi. Frontiers in Endocrinology, 2019, 10, 199.	3.5	9
12	Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Frontiers in Endocrinology, 2019, 10, 106.	3.5	22
13	Editorial: O-GlcNAcylation: Expanding the Frontiers. Frontiers in Endocrinology, 2019, 10, 867.	3.5	2
14	Cross regulation between mTOR signaling and O-GlcNAcylation. Journal of Bioenergetics and Biomembranes, 2018, 50, 213-222.	2.3	33
15	The Many Ways by Which O-GlcNAcylation May Orchestrate the Diversity of Complex Glycosylations. Molecules, 2018, 23, 2858.	3.8	34
16	Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11033-E11042.	7.1	35
17	Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget, 2018, 9, 1380-1402.	1.8	69
18	Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases. Frontiers in Endocrinology, 2018, 9, 602.	3.5	52

2

#	Article	IF	CITATIONS
19	Apart From Rhoptries, Identification of Toxoplasma gondii's O-GlcNAcylated Proteins Reinforces the Universality of the O-GlcNAcome. Frontiers in Endocrinology, 2018, 9, 450.	3.5	13
20	O-GlcNAc transferase associates with the MCM2–7 complex and its silencing destabilizes MCM–MCM interactions. Cellular and Molecular Life Sciences, 2018, 75, 4321-4339.	5.4	14
21	Disrupting membrane lipids composition promotes tumorigenesis: the other dark side of cholesterol and the potential implication of gangliosides. Translational Cancer Research, 2018, 7, S587-S590.	1.0	1
22	OGT: a short overview of an enzyme standing out from usual glycosyltransferases. Biochemical Society Transactions, 2017, 45, 365-370.	3.4	35
23	O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview. Biochemical Society Transactions, 2017, 45, 323-338.	3.4	34
24	Effect of amyloid-l̂' (25–35) in hyperglycemic and hyperinsulinemic rats, effects on phosphorylation and O-GlcNAcylation of tau protein. Neuropeptides, 2017, 63, 18-27.	2.2	7
25	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARÎ ³ . Scientific Reports, 2017, 7, 14087.	3.3	33
26	Recombinant fungal lectin as a new tool to investigate <i>O</i> -GlcNAcylation processes. Glycobiology, 2017, 27, 123-128.	2.5	22
27	Identification of O-GlcNAcylated proteins in Plasmodium falciparum. Malaria Journal, 2017, 16, 485.	2.3	25
28	Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines. Frontiers in Endocrinology, 2016, 7, 46.	3.5	41
29	O-GlcNAcylation and the Metabolic Shift in High-Proliferating Cells: All the Evidence Suggests that Sugars Dictate the Flux of Lipid Biogenesis in Tumor Processes. Frontiers in Oncology, 2016, 6, 6.	2.8	18
30	The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase. Journal of Molecular Biology, 2016, 428, 3295-3304.	4.2	45
31	Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation. Biochemical and Biophysical Research Communications, 2016, 478, 942-948.	2.1	30
32	<i>O</i> -GlcNAcylation: A sweet thorn in the spindle!. Cell Cycle, 2016, 15, 1954-1955.	2.6	3
33	Evidence for an imbalance between tau O-ClcNAcylation and phosphorylation in the hippocampus of a mouse model of Alzheimer's disease. Pharmacological Research, 2016, 105, 186-197.	7.1	39
34	Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin. PLoS ONE, 2015, 10, e0129965.	2.5	18
35	30 Years Old: O-GlcNAc Reaches the Age of Reason ââ,¬â€œ Regulation of Cell Signaling and Metabolism by O-GlcNAcylation. Frontiers in Endocrinology, 2015, 6, 17.	3.5	15
36	Regulatory O-ClcNAcylation sites on FoxO1 are yet to be identified. Biochemical and Biophysical Research Communications, 2015, 462, 151-158.	2.1	20

#	Article	IF	CITATIONS
37	Detection and identification of <i>O</i> â€GlcNAcylated proteins by proteomic approaches. Proteomics, 2015, 15, 1039-1050.	2.2	36
38	O-GlcNAcylation, an Epigenetic Mark. Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Frontiers in Endocrinology, 2014, 5, 155.	3.5	70
39	Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and WNT signaling in a rodent model. DMM Disease Models and Mechanisms, 2014, 7, 693-700.	2.4	34
40	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	7.3	55
41	<i>O</i> â€GlcNAcylation stabilizes βâ€catenin through direct competition with phosphorylation at threonine 41. FASEB Journal, 2014, 28, 3325-3338.	0.5	114
42	Design of glycosyltransferase inhibitors targeting human <i>O</i> -GlcNAc transferase (OGT). MedChemComm, 2014, 5, 1172-1178.	3.4	17
43	Antibodies and Activity Measurements for the Detection of O-ClcNAc Transferase and Assay of its Substrate, UDP-ClcNAc. Methods in Molecular Biology, 2013, 1022, 147-159.	0.9	5
44	Proteomics and PUGNAcity will overcome questioning of insulin resistance induction by non-selective inhibition of <i>O</i> -GlcNAcase. Proteomics, 2013, 13, n/a-n/a.	2.2	5
45	O-GlcNAcylation: A New Cancer Hallmark?. Frontiers in Endocrinology, 2013, 4, 99.	3.5	207
46	Insulin signaling controls the expression of O â€GlcNAc transferase and its interaction with lipid microdomains. FASEB Journal, 2013, 27, 3478-3486.	0.5	43
47	The hexosamine biosynthetic pathway and <i>O</i> -GlcNAcylation drive the expression of β-catenin and cell proliferation. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E417-E424.	3.5	62
48	Recall sugars, forget Alzheimer's. Nature Chemical Biology, 2012, 8, 325-326.	8.0	7
49	Serum-stimulated cell cycle entry promotes ncOGT synthesis required for cyclin D expression. Oncogenesis, 2012, 1, e36-e36.	4.9	50
50	PUGNAc treatment leads to an unusual accumulation of free oligosaccharides in CHO cells. Journal of Biochemistry, 2012, 151, 439-446.	1.7	20
51	Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1839-1848.	2.4	56
52	Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study. Amino Acids, 2011, 40, 847-856.	2.7	34
53	<i>O</i> -GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver. Diabetes, 2011, 60, 1399-1413.	0.6	180
54	Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 67-79.	2.4	95

#	Article	IF	CITATIONS
55	Arginine 469 is a pivotal residue for the Hsc70–GlcNAc-binding property. Biochemical and Biophysical Research Communications, 2010, 400, 537-542.	2.1	4
56	Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development. Glycoconjugate Journal, 2009, 26, 301-311.	2.7	21
57	Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochemical and Biophysical Research Communications, 2008, 369, 539-546.	2.1	38
58	Protein ubiquitination is modulated by <i>O</i> lcNAc glycosylation. FASEB Journal, 2008, 22, 2901-2911.	0.5	91
59	Identification of Structural and Functional O-Linked N-Acetylglucosamine-bearing Proteins in Xenopus laevis Oocyte. Molecular and Cellular Proteomics, 2008, 7, 2229-2245.	3.8	70
60	O-Linked N-Acetylglucosaminyltransferase Inhibition Prevents G2/M Transition in Xenopus laevis Oocytes. Journal of Biological Chemistry, 2007, 282, 12527-12536.	3.4	63
61	Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding. Biochemical and Biophysical Research Communications, 2007, 361, 414-420.	2.1	37
62	Increased Chromatin Association of Sp1 in Interphase Cells by PP2A-mediated Dephosphorylations. Journal of Molecular Biology, 2006, 364, 897-908.	4.2	30
63	Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization. Glycobiology, 2006, 16, 22-28.	2.5	35
64	O-GlcNAc glycosylation: a signal for the nuclear transport of cytosolic proteins?. International Journal of Biochemistry and Cell Biology, 2005, 37, 765-774.	2.8	79
65	DoesO-GlcNAc play a role in neurodegenerative diseases?. Expert Review of Proteomics, 2005, 2, 265-275.	3.0	47
66	Identification of O-linked N-Acetylglucosamine Proteins in Rat Skeletal Muscle Using Two-dimensional Gel Electrophoresis and Mass Spectrometry. Molecular and Cellular Proteomics, 2004, 3, 577-585.	3.8	99
67	The tumor suppressor HIC1 (hypermethylated in cancer 1) is O-GlcNAc glycosylated. FEBS Journal, 2004, 271, 3843-3854.	0.2	26
68	Modulation of O-GlcNAc glycosylation duringXenopus oocyte maturation. Journal of Cellular Biochemistry, 2004, 93, 999-1010.	2.6	39
69	70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine. Biochemical and Biophysical Research Communications, 2004, 319, 21-26.	2.1	48
70	Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins—a role in nuclear localization. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 167-176.	2.4	178
71	O-GlcNAc Glycosylation and Neurological Disorders. Advances in Experimental Medicine and Biology, 2003, 535, 189-202.	1.6	20
72	Function and Molecular Modeling of the Interaction between Human Interleukin 6 and Its HNK-1 Oligosaccharide Ligands. Journal of Biological Chemistry, 2002, 277, 12246-12252.	3.4	22

#	Article	IF	CITATIONS
73	O-glycosylation of the nuclear forms of Pax-6 products in quail neuroretina cells. Journal of Cellular Biochemistry, 2002, 85, 208-218.	2.6	20
74	O-glycosylation of the nuclear forms of Pax-6 products in quail neuroretina cells. Journal of Cellular Biochemistry, 2002, 85, 208-18.	2.6	6
75	Identification of N-acetyl-d-glucosamine-specific lectins from rat liver cytosolic and nuclear compartments as heat-shock proteins. Biochemical Journal, 2001, 360, 179.	3.7	37
76	Identification of N-acetyl-d-glucosamine-specific lectins from rat liver cytosolic and nuclear compartments as heat-shock proteins. Biochemical Journal, 2001, 360, 179-188.	3.7	61
77	O-glycan variability of egg-jelly mucins from Xenopus laevis: characterization of four phenotypes that differ by the terminal glycosylation of their mucins. Biochemical Journal, 2000, 352, 449-463.	3.7	32
78	Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line. Biochimica Et Biophysica Acta - General Subjects, 1999, 1472, 71-81.	2.4	59