Vladimir Tsukruk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/233818/publications.pdf

Version: 2024-02-01

416 papers

29,784 citations

82 h-index 154

434 all docs

434 docs citations

434 times ranked

30235 citing authors

g-index

#	Article	IF	CITATIONS
1	Coâ€Assembly of Biosynthetic Chiral Nematic Adhesive Materials with Dynamic Polarized Luminescence. Small, 2022, 18, e2104340.	10.0	17
2	Carbon Fiber Surface Functional Landscapes: Nanoscale Topography and Property Distribution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4699-4713.	8.0	10
3	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	O
4	Spectroscopy finds chiral phonons. Nature Photonics, 2022, 16, 337-338.	31.4	3
5	Cellulose Nanocrystals' Assembly under Ionic Strength Variation: From High Orientation Ordering to a Random Orientation. Langmuir, 2022, 38, 6363-6375.	3.5	9
6	Flexible Sustained Ionogels with Ionic Hyperbranched Polymers for Enhanced Ion-Conduction and Energy Storage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27028-27039.	8.0	14
7	Weakly Ionically Bound Thermosensitive Hyperbranched Polymers. Langmuir, 2021, 37, 2913-2927.	3.5	4
8	Shape Persistent, Highly Conductive Ionogels from Ionic Liquids Reinforced with Cellulose Nanocrystal Network. Advanced Functional Materials, 2021, 31, 2103083.	14.9	42
9	Bioâ€Organic Chiral Nematic Materials with Adaptive Light Emission and Onâ€Demand Handedness. Advanced Materials, 2021, 33, e2103329.	21.0	36
10	Dynamic Chiroâ€Optics of Bioâ€Inorganic Nanomaterials via Seamless Coâ€Assembly of Semiconducting Nanorods and Polysaccharide Nanocrystals. Advanced Functional Materials, 2021, 31, 2104596.	14.9	27
11	Reactive Amphiphilic Aprotic Ionic Liquids Based on Functionalized Oligomeric Silsesquioxanes. Bulletin of the Chemical Society of Japan, 2021, 94, 2263-2271.	3.2	5
12	Switchable Photonic Bioâ€Adhesive Materials. Advanced Materials, 2021, 33, e2103674.	21.0	33
13	Mixed star-shaped POSS-based molecule with hydroxy group-containing units and azobenzene fragments as two types of arms. Mendeleev Communications, 2021, 31, 27-29.	1.6	4
14	Monolithic Chiral Nematic Organization of Cellulose Nanocrystals under Capillary Confinement. ACS Nano, 2021, 15, 19418-19429.	14.6	23
15	Chiral Optoelectronic Functionalities <i>via</i> DNA–Organic Semiconductor Complex. ACS Nano, 2021, 15, 20353-20363.	14.6	7
16	Integration of Optical Surface Structures with Chiral Nanocellulose for Enhanced Chiroptical Properties. Advanced Materials, 2020, 32, e1905600.	21.0	40
17	Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angewandte Chemie - International Edition, 2020, 59, 20167-20173.	13.8	14
18	Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angewandte Chemie, 2020, 132, 20342-20348.	2.0	O

#	Article	IF	Citations
19	Marine Structural Protein Stability Induced by Hofmeister Salt Annealing and Enzymatic Cross-Linking. ACS Biomaterials Science and Engineering, 2020, 6, 5519-5526.	5.2	2
20	Chiral Cellulose Nanocrystals with Intercalated Amorphous Polysaccharides for Controlled Iridescence and Enhanced Mechanics. Advanced Functional Materials, 2020, 30, 2003597.	14.9	73
21	Alternating Stacking of Nanocrystals and Nanofibers into Ultrastrong Chiral Biocomposite Laminates. ACS Nano, 2020, 14, 14675-14685.	14.6	41
22	Bioencapsulated MXene Flakes for Enhanced Stability and Composite Precursors. Advanced Functional Materials, 2020, 30, 2004554.	14.9	63
23	<scp>3Dâ€printed</scp> polymer packing structures: Uniformity of morphology and mechanical properties via microprocessing conditions. Journal of Applied Polymer Science, 2020, 137, 49381.	2.6	9
24	Adhesive Polymers as Efficient Binders for High-Capacity Silicon Electrodes. ACS Applied Energy Materials, 2020, 3, 3387-3396.	5.1	34
25	Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy, 2020, 77, 105043.	16.0	52
26	Co-assembling Polysaccharide Nanocrystals and Nanofibers for Robust Chiral Iridescent Films. ACS Applied Materials & Discrete Samp; Interfaces, 2020, 12, 35345-35353.	8.0	17
27	Biopolymeric photonic structures: design, fabrication, and emerging applications. Chemical Society Reviews, 2020, 49, 983-1031.	38.1	138
28	Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries. Nano Energy, 2020, 73, 104804.	16.0	57
29	Protein-based functional nanocomposites. MRS Bulletin, 2020, 45, 1017-1026.	3.5	11
30	Tunable Interfacial Properties in Silk Ionomer Microcapsules with Tailored Multilayer Interactions. Macromolecular Bioscience, 2019, 19, e1800176.	4.1	8
31	Morphology and Surface Properties of Roach Water Transport Arrays. ACS Applied Bio Materials, 2019, 2, 2650-2660.	4.6	3
32	Control of Whispering Gallery Modes and PT-Symmetry Breaking in Colloidal Quantum Dot Microdisk Lasers with Engineered Notches. Nano Letters, 2019, 19, 6049-6057.	9.1	13
33	Self-Assembly of Emissive Nanocellulose/Quantum Dot Nanostructures for Chiral Fluorescent Materials. ACS Nano, 2019, 13, 9074-9081.	14.6	115
34	Enhanced Electrochemical Dark-Field Scattering Modulation on a Single Hybrid Core–Shell Nanostructure. Journal of Physical Chemistry C, 2019, 123, 28343-28352.	3.1	10
35	Transformations of Thermosensitive Hyperbranched Poly(ionic liquid)s Monolayers. Langmuir, 2019, 35, 11809-11820.	3.5	11
36	Enhancing Plasmonic–Photonic Hybrid Cavity Modes by Coupling of Individual Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 24255-24262.	3.1	14

#	Article	IF	CITATIONS
37	Coupled Whispering Gallery Mode Resonators via Templateâ€Assisted Assembly of Photoluminescent Microspheres. Advanced Functional Materials, 2019, 29, 1902520.	14.9	5
38	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	21.0	119
39	Heterogeneous forward and backward scattering modulation by polymer-infused plasmonic nanohole arrays. Journal of Materials Chemistry C, 2019, 7, 3090-3099.	5.5	8
40	Composite Structures with Emissive Quantum Dots for Light Enhancement. Advanced Optical Materials, 2019, 7, 1801072.	7.3	30
41	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	12.8	32
42	Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances, 2019, 5, eaax4424.	10.3	116
43	Oligomeric and Polymeric Ionic Liquids: Engineering Architecture and Morphology. Springer Proceedings in Physics, 2019, , 93-118.	0.2	1
44	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	31.8	182
45	Wrapping Nanocellulose Nets around Graphene Oxide Sheets. Angewandte Chemie, 2018, 130, 8644-8649.	2.0	15
46	Wrapping Nanocellulose Nets around Graphene Oxide Sheets. Angewandte Chemie - International Edition, 2018, 57, 8508-8513.	13.8	93
47	Highly Conductive and Transparent Reduced Graphene Oxide Nanoscale Films via Thermal Conversion of Polymer-Encapsulated Graphene Oxide Sheets. ACS Applied Materials & 2018, 10, 3975-3985.	8.0	53
48	Cellulose nanocrystals with different morphologies and chiral properties. Polymer, 2018, 145, 334-347.	3.8	66
49	En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13941-13952.	8.0	15
50	Novel branched nanostructures based on polyhedral oligomeric silsesquioxanes and azobenzene dyes containing different spacers and isolation groups. Journal of Materials Chemistry C, 2018, 6, 4065-4076.	5.5	16
51	Viscoelastic properties and ion dynamics in star-shaped polymerized ionic liquids. European Polymer Journal, 2018, 109, 326-335.	5.4	16
52	Attainment of Water and Oil Repellency for Engineering Thermoplastics without Long-Chain Perfluoroalkyls: Perfluoropolyether-Based Triblock Polyester Additives. Langmuir, 2018, 34, 12934-12946.	3.5	9
53	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37267-37276.	8.0	82
54	Robust and Flexible Micropatterned Electrodes and Microâ€Supercapacitors in Graphene–Silk Biopapers. Advanced Materials Interfaces, 2018, 5, 1801203.	3.7	16

#	Article	IF	CITATIONS
55	Robust Chiral Organization of Cellulose Nanocrystals in Capillary Confinement. Nano Letters, 2018, 18, 6770-6777.	9.1	63
56	Pop-Up Conducting Large-Area Biographene Kirigami. ACS Nano, 2018, 12, 9714-9720.	14.6	27
57	Sharp and Tunable Crystal/Fanoâ€Type Resonances Enabled by Outâ€ofâ€Plane Dipolar Coupling in Plasmonic Nanopatch Arrays. Annalen Der Physik, 2018, 530, 1700395.	2.4	9
58	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	7.3	95
59	Thermally Responsive Hyperbranched Poly(ionic liquid)s: Assembly and Phase Transformations. Macromolecules, 2018, 51, 4923-4937.	4.8	33
60	Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. ACS	8.0	42
61	Tunable Compartmentalized Morphologies of Multilayered Dual Responsive Star Block Polyampholytes. Macromolecules, 2018, 51, 4800-4812.	4.8	16
62	Spectral and directional properties of elliptical quantum-dot microlasers. Journal of Photonics for Energy, 2018, 8, 1.	1.3	2
63	Seriographyâ€Guided Reduction of Graphene Oxide Biopapers for Wearable Sensory Electronics. Advanced Functional Materials, 2017, 27, 1604802.	14.9	51
64	Self-Assembly of Hyperbranched Protic Poly(ionic liquid)s with Variable Peripheral Amphiphilicity. Bulletin of the Chemical Society of Japan, 2017, 90, 919-923.	3.2	15
65	Robust, Uniform, and Highly Emissive Quantum Dot–Polymer Films and Patterns Using Thiol–Ene Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 17435-17448.	8.0	32
66	Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 2017, 4, 1691-1704.	6.6	10
67	Ligand-Exchange Dynamics on Gold Nanocrystals: Direct Monitoring of Nanoscale Polyvinylpyrrolidone–Thiol Domain Surface Morphology. Langmuir, 2017, 33, 3576-3587.	3.5	14
68	Largeâ€Scale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes. Advanced Optical Materials, 2017, 5, 1700011.	7.3	21
69	Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers. Langmuir, 2017, 33, 3187-3199.	3.5	23
70	High-Resolution Quantum Dot Photopatterning via Interference Lithography Assisted Microstamping. Journal of Physical Chemistry C, 2017, 121, 13370-13380.	3.1	14
71	Immobilization of Recombinant <i>E. coli</i> Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function. ACS Biomaterials Science and Engineering, 2017, 3, 2278-2292.	5.2	23
72	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	47.7	258

#	Article	IF	CITATIONS
73	Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces. Biomacromolecules, 2017, 18, 2876-2886.	5.4	14
74	Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films. Langmuir, 2017, 33, 14325-14331.	3.5	6
75	Electrochromic tuning of transparent gold nanorods with poly[(3,4-propylenedioxy)pyrrole] shells in the near-infrared region. Journal of Materials Chemistry C, 2017, 5, 12571-12584.	5.5	15
76	Template-Guided Assembly of Silk Fibroin on Cellulose Nanofibers for Robust Nanostructures with Ultrafast Water Transport. ACS Nano, 2017, 11, 12008-12019.	14.6	107
77	Programmed Emission Transformations: Negativeâ€toâ€Positive Patterning Using the Decayâ€toâ€Recovery Behavior of Quantum Dots. Advanced Optical Materials, 2017, 5, 1600509.	7.3	8
78	Parity-Time Symmetry and Coupling Effects in Quantum Dot MicroDisk Lasers., 2017,,.		1
79	Influence of Defects on the Spectral and Directional Properties of Quantum-Dot Microdisk Lasers. , 2017, , .		0
80	Multicompartmental Microcapsules with Orthogonal Programmable Twoâ€Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angewandte Chemie - International Edition, 2016, 55, 4908-4913.	13.8	62
81	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie - International Edition, 2016, 55, 5071-5075.	13.8	42
82	Ultrarobust Transparent Cellulose Nanocrystalâ€Graphene Membranes with High Electrical Conductivity. Advanced Materials, 2016, 28, 1501-1509.	21.0	280
83	Selfâ€Powered Electronic Skin with Biotactile Selectivity. Advanced Materials, 2016, 28, 3549-3556.	21.0	97
84	Frontispiz: Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angewandte Chemie, 2016, 128, .	2.0	0
85	Largeâ€Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature. Advanced Optical Materials, 2016, 4, 608-619.	7.3	27
86	Multicompartmental Microcapsules with Orthogonal Programmable Twoâ€Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angewandte Chemie, 2016, 128, 4992-4997.	2.0	8
87	Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates. Chemistry of Materials, 2016, 28, 2868-2881.	6.7	67
88	Design of Hybrid Electrochromic Materials with Large Electrical Modulation of Plasmonic Resonances. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13064-13075.	8.0	37
89	Probing Flexural Properties of Cellulose Nanocrystal–Graphene Nanomembranes with Force Spectroscopy and Bulging Test. Langmuir, 2016, 32, 5383-5393.	3.5	27
90	The effect of plasmon resonance coupling in P3HT-coated silver nanodisk monolayers on their optical sensitivity. Journal of Materials Chemistry C, 2016, 4, 9813-9822.	5 . 5	10

#	Article	IF	Citations
91	Bionanocomposites: Silk Fibroin-Substrate Interactions at Heterogeneous Nanocomposite Interfaces (Adv. Funct. Mater. 35/2016). Advanced Functional Materials, 2016, 26, 6496-6496.	14.9	0
92	Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with pH-Sensitive and Electroactive Polymer Shells. Chemistry of Materials, 2016, 28, 7551-7563.	6.7	48
93	Enhancement of optical gain characteristics of quantum dot films by optimization of organic ligands. Journal of Materials Chemistry C, 2016, 4, 10069-10081.	5.5	19
94	Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures. ACS Applied Materials & lamp; Interfaces, 2016, 8, 24962-24973.	8.0	81
95	Silk Fibroin–Substrate Interactions at Heterogeneous Nanocomposite Interfaces. Advanced Functional Materials, 2016, 26, 6380-6392.	14.9	57
96	Assembly of Amphiphilic Hyperbranched Polymeric Ionic Liquids in Aqueous Media at Different pH and Ionic Strength. Macromolecules, 2016, 49, 8697-8710.	4.8	31
97	Biotactile Sensors: Selfâ€Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016). Advanced Materials, 2016, 28, 3414-3414.	21.0	2
98	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie, 2016, 128, 5155-5159.	2.0	8
99	Bimorph Silk Microsheets with Programmable Actuating Behavior: Experimental Analysis and Computer Simulations. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17694-17706.	8.0	21
100	Ultrastrong Freestanding Graphene Oxide Nanomembranes with Surface-Enhanced Raman Scattering Functionality by Solvent-Assisted Single-Component Layer-by-Layer Assembly. ACS Nano, 2016, 10, 6702-6715.	14.6	45
101	Micromechanical properties of strain-sensitive lyriform organs of a wandering spider (Cupiennius) Tj ETQq1 1 0.7	843]4 rgE 8.3	3T /Qverlock
102	Frontispiece: Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angewandte Chemie - International Edition, 2016, 55, .	13.8	0
103	Hierarchical Assembly of Star Polymer Polymersomes into Responsive Multicompartmental Microcapsules. Chemistry of Materials, 2016, 28, 975-985.	6.7	47
104	Activating "Invisible―Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene–Metal Contact. ACS Nano, 2016, 10, 1042-1049.	14.6	12
105	Probing elastic properties of soft materials with AFM: Data analysis for different tip geometries. Polymer, 2016, 102, 317-325.	3.8	24
106	Plasmonic Nanogels for Unclonable Optical Tagging. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 4031-4041.	8.0	46
107	Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics, 2016, 3, 647-658.	6.6	45
108	Selfâ€(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material. Angewandte Chemie - International Edition, 2015, 54, 8490-8493.	13.8	24

#	Article	IF	Citations
109	Interface-enforced complexation between copolymer blocks. Soft Matter, 2015, 11, 3559-3565.	2.7	22
110	Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12570-12596.	8.0	125
111	Localized conductive patterning <i>via</i> focused electron beam reduction of graphene oxide. Applied Physics Letters, 2015, 106, .	3.3	11
112	Designing two-dimensional materials that spring rapidly into three-dimensional shapes. Science, 2015, 347, 130-131.	12.6	15
113	Light-Responsive Plasmonic Arrays Consisting of Silver Nanocubes and a Photoisomerizable Matrix. ACS Applied Materials & Diterfaces, 2015, 7, 4902-4912.	8.0	29
114	Silk Macromolecules with Amino Acid–Poly(Ethylene Glycol) Grafts for Controlling Layer-by-Layer Encapsulation and Aggregation of Recombinant Bacterial Cells. ACS Nano, 2015, 9, 1219-1235.	14.6	47
115	Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity. Nanoscale, 2015, 7, 5230-5239.	5.6	13
116	Branched Polyhedral Oligomeric Silsesquioxane Nanoparticles Prepared via Strain-Promoted 1,3-Dipolar Cycloadditions. Langmuir, 2015, 31, 8146-8155.	3.5	14
117	Stick–slip water penetration into capillaries coated with swelling hydrogel. Soft Matter, 2015, 11, 5933-5939.	2.7	9
118	Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy. Japanese Journal of Applied Physics, 2015, 54, 08LA02.	1.5	41
119	Multiresponsive Star-Graft Quarterpolymer Monolayers. Macromolecules, 2015, 48, 3344-3353.	4.8	26
120	Remote Giant Multispectral Plasmonic Shifts of Labile Hinged Nanorod Array via Magnetic Field. Nano Letters, 2015, 15, 2679-2684.	9.1	22
121	Micro- and nano-structural details of a spider's filter for substrate vibrations: relevance for low-frequency signal transmission. Journal of the Royal Society Interface, 2015, 12, 20141111.	3.4	31
122	Printed Dual Cell Arrays for Multiplexed Sensing. ACS Biomaterials Science and Engineering, 2015, 1, 287-294.	5.2	15
123	Cellulose Nanocrystal Microcapsules as Tunable Cages for Nano- and Microparticles. ACS Nano, 2015, 9, 10887-10895.	14.6	72
124	Tuning the Electronic Properties of Robust Bio-Bond Graphene Papers by Spontaneous Electrochemical Reduction: From Insulators to Flexible Semi-Metals. Chemistry of Materials, 2015, 27, 6717-6729.	6.7	24
125	Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition. Nanoscale, 2015, 7, 14946-14952.	5.6	12
126	Biopolymeric Nanocomposites with Enhanced Interphases. Langmuir, 2015, 31, 10859-10870.	3.5	45

#	Article	IF	CITATIONS
127	Multiresponsive Microcapsules Based on Multilayer Assembly of Star Polyelectrolytes. Macromolecules, 2014, 47, 7858-7868.	4.8	44
128	A spider's biological vibration filter: Micromechanical characteristics of a biomaterial surface. Acta Biomaterialia, 2014, 10, 4832-4842.	8.3	44
129	Silver Nanocube Aggregates in Cylindrical Pores for Higher Refractive Index Plasmonic Sensing. Particle and Particle Systems Characterization, 2014, 31, 274-283.	2.3	29
130	Reconfigurable and actuating structures from soft materials. Soft Matter, 2014, 10, 1246-1263.	2.7	87
131	Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science, 2014, 39, 1934-1972.	24.7	922
132	Programmable Arrays of "Microâ€Bubble―Constructs via Selfâ€Encapsulation. Advanced Functional Materials, 2014, 24, 4364-4373.	14.9	17
133	Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly. Nano Letters, 2014, 14, 6863-6871.	9.1	162
134	Mapping micromechanical properties of soft polymer contact lenses. Polymer, 2014, 55, 6091-6101.	3.8	22
135	Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics. Applied Physics A: Materials Science and Processing, 2014, 117, 1659-1674.	2.3	23
136	Stacked Gold Nanorectangles with Higher Order Plasmonic Modes and Top-Down Plasmonic Coupling. Journal of Physical Chemistry C, 2014, 118, 5453-5462.	3.1	6
137	Controlling the Physicochemical State of Carbon on Graphene Using Focused Electron-Beam-Induced Deposition. ACS Nano, 2014, 8, 6805-6813.	14.6	17
138	Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays. ACS Nano, 2014, 8, 9410-9421.	14.6	84
139	Inkjet Printing of Silk Nest Arrays for Cell Hosting. Biomacromolecules, 2014, 15, 1428-1435.	5.4	72
140	Robust Microcapsules with Controlled Permeability from Silk Fibroin Reinforced with Graphene Oxide. Small, 2014, 10, 5087-5097.	10.0	49
141	Tailoring the Plasmonic Modes of a Gratingâ€Nanocube Assembly to Achieve Broadband Absorption in the Visible Spectrum. Advanced Functional Materials, 2014, 24, 6797-6805.	14.9	30
142	Probing of Polymer Surfaces in the Viscoelastic Regime. Langmuir, 2014, 30, 10566-10582.	3.5	93
143	Chemical Reduction of Individual Graphene Oxide Sheets as Revealed by Electrostatic Force Microscopy. Journal of the American Chemical Society, 2014, 136, 6546-6549.	13.7	66
144	Star-Shaped Molecules with Polyhedral Oligomeric Silsesquioxane Core and Azobenzene Dye Arms. Langmuir, 2014, 30, 8856-8865.	3.5	36

#	Article	IF	Citations
145	Thermo-Induced Limited Aggregation of Responsive Star Polyelectrolytes. Macromolecules, 2014, 47, 2112-2121.	4.8	46
146	Competitive Adsorption of Dopamine and Rhodamine 6G on the Surface of Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2459-2470.	8.0	171
147	Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer. ACS Nano, 2014, 8, 6182-6192.	14.6	347
148	Multicompartmental Microcapsules from Star Copolymer Micelles. Macromolecules, 2013, 46, 1425-1436.	4.8	33
149	Aptamerâ€Assisted Assembly of Gold Nanoframe Dimers. Particle and Particle Systems Characterization, 2013, 30, 1071-1078.	2.3	9
150	Star Polymer Unimicelles on Graphene Oxide Flakes. Langmuir, 2013, 29, 9761-9769.	3.5	30
151	Interfacial behavior of pH responsive ampholytic heteroarm star block terpolymers. Polymer, 2013, 54, 1150-1159.	3.8	16
152	Biomimetic Coatings to Control Cellular Function through Cell Surface Engineering. Advanced Functional Materials, 2013, 23, 4437-4453.	14.9	106
153	Nondestructive Light-Initiated Tuning of Layer-by-Layer Microcapsule Permeability. ACS Nano, 2013, 7, 598-613.	14.6	65
154	Surface Assembly and Plasmonic Properties in Strongly Coupled Segmented Gold Nanorods. Small, 2013, 9, 2979-2990.	10.0	31
155	Ultraâ€Robust Graphene Oxideâ€Silk Fibroin Nanocomposite Membranes. Advanced Materials, 2013, 25, 2301-2307.	21.0	261
156	Assembly of the anisotropic microcapsules in aqueous dispersions. Soft Matter, 2013, 9, 3651.	2.7	9
157	Cell Surface Engineering with Edible Protein Nanoshells. Small, 2013, 9, 3128-3137.	10.0	45
158	Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. Journal of Materials Chemistry A, 2013, 1, 2777.	10.3	111
159	Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Materials, 2013, 12, 735-740.	27.5	60
160	Exploration of Plasma-Enhanced Chemical Vapor Deposition as a Method for Thin-Film Fabrication with Biological Applications. ACS Applied Materials & Early; Interfaces, 2013, 5, 3983-3994.	8.0	110
161	Controlled Topography Change of Subdiffraction Structures Based on Photosensitive Polymer Films Induced by Surface Plasmon Polaritons. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6009-6016.	8.0	18
162	A Robust and Facile Approach To Assembling Mobile and Highly-Open Unfrustrated Triangular Lattices from Ferromagnetic Nanorods. Nano Letters, 2013, 13, 36-42.	9.1	22

#	Article	IF	CITATIONS
163	Writtenâ€in Conductive Patterns on Robust Graphene Oxide Biopaper by Electrochemical Microstamping. Angewandte Chemie - International Edition, 2013, 52, 13784-13788.	13.8	132
164	Fabrication of an UltraLow-Resistance Ohmic Contact to MWCNT–Metal Interconnect Using Graphitic Carbon by Electron Beam-Induced Deposition (EBID). IEEE Nanotechnology Magazine, 2012, 11, 1223-1230.	2.0	38
165	Silver-Decorated Cylindrical Nanopores: Combining the Third Dimension with Chemical Enhancement for Efficient Trace Chemical Detection with SERS. Journal of Physical Chemistry C, 2012, 116, 13917-13927.	3.1	24
166	The unusual fluorescence intensity enhancement of poly(p-phenyleneethynylene) polymer separated from the silver nanocube surface by H-bonded LbL shells. Journal of Materials Chemistry, 2012, 22, 16745.	6.7	23
167	Using Amphiphilic Nanostructures To Enable Long-Range Ensemble Coalescence and Surface Rejuvenation in Dropwise Condensation. ACS Nano, 2012, 6, 3262-3268.	14.6	68
168	Permeability and Micromechanical Properties of Silk Ionomer Microcapsules. Langmuir, 2012, 28, 12235-12244.	3.5	50
169	A New Twist on Scanning Thermal Microscopy. Nano Letters, 2012, 12, 1218-1223.	9.1	16
170	Utilizing Conformational Changes for Patterning Thin Films of Recombinant Spider Silk Proteins. Biomacromolecules, 2012, 13, 3189-3199.	5 . 4	27
171	Responsive plasma polymerized ultrathin nanocomposite films. Polymer, 2012, 53, 4686-4693.	3.8	7
172	pH-Responsive Layer-by-Layer Nanoshells for Direct Regulation of Cell Activity. ACS Nano, 2012, 6, 4266-4278.	14.6	91
173	Plasma-Enhanced Copolymerization of Amino Acid and Synthetic Monomers. Langmuir, 2012, 28, 1833-1845.	3. 5	15
174	Morphology and Properties of Microcapsules with Different Core Releases. Chemistry of Materials, 2012, 24, 1245-1254.	6.7	45
175	Template-Assisted Assembly of the Functionalized Cubic and Spherical Microparticles. Langmuir, 2012, 28, 13345-13353.	3.5	12
176	Inkjet-Assisted Layer-by-Layer Printing of Encapsulated Arrays. ACS Applied Materials & Diterfaces, 2012, 4, 3102-3110.	8.0	35
177	Assembling hyperbranched polymerics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 83-100.	2.1	34
178	Lightâ€Induced Plasmonâ€Assisted Phase Transformation of Carbon on Metal Nanoparticles. Advanced Functional Materials, 2012, 22, 2129-2139.	14.9	23
179	Silk Layering As Studied with Neutron Reflectivity. Langmuir, 2012, 28, 11481-11489.	3.5	15
180	Synthetic materials for bio-inspired flow-responsive structures. , 2012, , 341-349.		3

#	Article	IF	Citations
181	Label-Free Raman Mapping of Surface Distribution of Protein A and IgG Biomolecules. Langmuir, 2011, 27, 3198-3205.	3.5	38
182	Cell Surface Engineering with Polyelectrolyte Multilayer Thin Films. Journal of the American Chemical Society, 2011, 133, 7054-7064.	13.7	178
183	Direct Probing of Micromechanical Properties of Hydrogen-Bonded Layer-by-Layer Microcapsule Shells with Different Chemical Compositions. Langmuir, 2011, 27, 11157-11165.	3.5	54
184	Robust and Responsive Silk Ionomer Microcapsules. Biomacromolecules, 2011, 12, 4319-4325.	5.4	58
185	Influence of micro-Golay cell cavity diameter on millimeter-wave detection sensitivity. , 2011, , .		2
186	Thermally Induced Transformations of Amorphous Carbon Nanostructures Fabricated by Electron Beam Induced Deposition. ACS Applied Materials & Deposition. ACS Applied Materials & Deposition	8.0	27
187	pH-Controlled Exponential and Linear Growing Modes of Layer-by-Layer Assemblies of Star Polyelectrolytes. Journal of the American Chemical Society, 2011, 133, 9592-9606.	13.7	86
188	Raman Markers from Silver Nanowire Crossbars. Journal of Physical Chemistry C, 2011, 115, 4387-4394.	3.1	31
189	Hydrogen-bonded LbL shells for living cell surface engineering. Soft Matter, 2011, 7, 2364-2372.	2.7	140
190	Thin Film Assembly of Spider Silk-like Block Copolymers. Langmuir, 2011, 27, 1000-1008.	3.5	39
191	Gold Nanoparticles Grown on Star-Shaped Block Copolymer Monolayers. Langmuir, 2011, 27, 10730-10738.	3. 5	15
192	pHâ€Triggered SERS via Modulated Plasmonic Coupling in Individual Bimetallic Nanocobs. Small, 2011, 7, 1192-1198.	10.0	40
193	SERS Effects in Silverâ€Decorated Cylindrical Nanopores. Small, 2011, 7, 3452-3457.	10.0	41
194	Truly Nonionic Polymer Shells for the Encapsulation of Living Cells. Macromolecular Bioscience, 2011, 11, 1244-1253.	4.1	46
195	Silkâ€onâ€Silk Layerâ€byâ€Layer Microcapsules. Advanced Materials, 2011, 23, 4655-4660.	21.0	108
196	Probing Soft Matter with the Atomic Force Microscopies: Imaging and Force Spectroscopy. Polymer Reviews, 2010, 50, 235-286.	10.9	215
197	Buckling instabilities in periodic composite polymeric materials. Soft Matter, 2010, 6, 5681.	2.7	91
198	Flexible Silk–Inorganic Nanocomposites: From Transparent to Highly Reflective. Advanced Functional Materials, 2010, 20, 840-846.	14.9	82

#	Article	IF	Citations
199	A Facile Fabrication Strategy for Patterning Protein Chain Conformation in Silk Materials. Advanced Materials, 2010, 22, 115-119.	21.0	33
200	Metalized Porous Interference Lithographic Microstructures via Biofunctionalization. Advanced Materials, 2010, 22, 1369-1373.	21.0	17
201	Spontaneous Selfâ€Folding in Confined Ultrathin Polymer Gels. Advanced Materials, 2010, 22, 1263-1268.	21.0	37
202	Externalâ€6train Induced Insulating Phase Transition in VO ₂ Nanobeam and Its Application as Flexible Strain Sensor. Advanced Materials, 2010, 22, 5134-5139.	21.0	223
203	Anisotropic Micro―and Nanoâ€Capsules. Macromolecular Rapid Communications, 2010, 31, 2041-2046.	3.9	66
204	Biodegradable self-reporting nanocomposite films of poly(lactic acid) nanoparticles engineered by layer-by-layer assembly. Polymer, 2010, 51, 4127-4139.	3.8	43
205	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	27.5	5,007
206	The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface. Nanotechnology, 2010, 21, 035202.	2.6	31
207	Secondary structure of silaffin at interfaces and titania formation. Journal of Materials Chemistry, 2010, 20, 5242.	6.7	30
208	In situ Growth of Silver Nanoparticles in Porous Membranes for Surface-Enhanced Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3333-3339.	8.0	92
209	Swelling-Induced Folding in Confined Nanoscale Responsive Polymer Gels. ACS Nano, 2010, 4, 2327-2337.	14.6	37
210	Robust Plasma Polymerized-Titania/Silica Janus Microparticles. Chemistry of Materials, 2010, 22, 3259-3264.	6.7	45
211	Plasma Amino Acid Coatings for a Conformal Growth of Titania Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2269-2281.	8.0	17
212	Co-cross-linking Silk Matrices with Silica Nanostructures for Robust Ultrathin Nanocomposites. ACS Nano, 2010, 4, 7053-7063.	14.6	66
213	pH-Controlled Assembly and Properties of LbL Membranes from Branched Conjugated Poly(alkoxythiophene sulfonate) and Various Polycations. Langmuir, 2010, 26, 7138-7147.	3.5	20
214	Surface Behavior of PS _{<i>n</i>} (P2VP- <i>b</i> -P <i>t</i> BA) _{<i>n</i>} Heteroarm Stars. Macromolecules, 2010, 43, 6818-6828.	4.8	16
215	pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter, 2010, 6, 800-807.	2.7	66
216	Graphene Oxideâ^'Polyelectrolyte Nanomembranes. ACS Nano, 2010, 4, 4667-4676.	14.6	257

#	Article	IF	Citations
217	Maskless and Resist-Free Rapid Prototyping of Three-Dimensional Structures Through Electron Beam Induced Deposition (EBID) of Carbon in Combination with Metal-Assisted Chemical Etching (MaCE) of Silicon. ACS Applied Materials & Diterfaces, 2010, 2, 969-973.	8.0	26
218	Replication of anisotropic dispersed particulates and complex continuous templates. Journal of Materials Chemistry, 2010, 20, 6587.	6.7	56
219	Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter, 2010, 6, 3596.	2.7	243
220	Ultrathin flexible nanocomposite membranes as miniature pressure sensors., 2009,,.		0
221	Redox-Active Ultrathin Template of Silk Fibroin: Effect of Secondary Structure on Gold Nanoparticle Reduction. Chemistry of Materials, 2009, 21, 2696-2704.	6.7	49
222	Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (<i>Cupiennius salei</i>). Journal of the Royal Society Interface, 2009, 6, 681-694.	3.4	44
223	Bifurcated Mechanical Behavior of Deformed Periodic Porous Solids. Advanced Functional Materials, 2009, 19, 1426-1436.	14.9	59
224	Proteinâ€Enabled Synthesis of Monodisperse Titania Nanoparticles On and Within Polyelectrolyte Matrices. Advanced Functional Materials, 2009, 19, 2303-2311.	14.9	31
225	Bioinspired Material Approaches to Sensing. Advanced Functional Materials, 2009, 19, 2527-2544.	14.9	93
226	Facile Plasmaâ€Enhanced Deposition of Ultrathin Crosslinked Amino Acid Films for Conformal Biometallization. Small, 2009, 5, 741-749.	10.0	26
227	Bimetallic Nanostructures as Active Raman Markers: Goldâ€Nanoparticle Assembly on 1D and 2D Silver Nanostructure Surfaces. Small, 2009, 5, 2460-2466.	10.0	58
228	Unmasked by stretching. Nature Materials, 2009, 8, 704-705.	27.5	0
229	Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt. Nano Letters, 2009, 9, 2661-2665.	9.1	22
230	Instabilities and Pattern Transformation in Periodic, Porous Elastoplastic Solid Coatings. ACS Applied Materials & Samp; Interfaces, 2009, 1, 42-47.	8.0	45
231	Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity. Langmuir, 2009, 25, 14017-14024.	3.5	97
232	pH-Responsive Layered Hydrogel Microcapsules as Gold Nanoreactors. Chemistry of Materials, 2009, 21, 2158-2167.	6.7	69
233	Responsive Hybrid Nanotubes Composed of Block Copolymer and Gold Nanoparticles. Macromolecules, 2009, 42, 5781-5785.	4.8	36
234	Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules. ACS Nano, 2009, 3, 181-188.	14.6	190

#	Article	IF	Citations
235	Nanoporous Membranes with Mixed Nanoclusters for Raman-Based Label-Free Monitoring of Peroxide Compounds. Analytical Chemistry, 2009, 81, 5740-5748.	6.5	66
236	Formation and Optical Properties of Compression-Induced Nanoscale Buckles on Silver Nanowires. ACS Nano, 2009, 3, 1795-1802.	14.6	32
237	Bulk and Surface Assembly of Branched Amphiphilic Polyhedral Oligomer Silsesquioxane Compounds. Langmuir, 2009, 25, 1196-1209.	3.5	47
238	Nondestructive <i>In Situ</i> Identification of Crystal Orientation of Anisotropic ZnO Nanostructures. ACS Nano, 2009, 3, 2593-2600.	14.6	38
239	Structure and Properties of Functionalized Bithiophenesilane Monodendrons. Langmuir, 2009, 25, 9270-9284.	3.5	13
240	Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater flow detection. Soft Matter, 2009, 5, 292-295.	2.7	114
241	Nanoparticleâ€Decorated Nanocanals for Surfaceâ€Enhanced Raman Scattering. Small, 2008, 4, 1980-1984.	10.0	167
242	Nanostructured Surfaces and Assemblies as SERS Media. Small, 2008, 4, 1576-1599.	10.0	726
243	Directed Selfâ€Assembly of Gradient Concentric Carbon Nanotube Rings. Advanced Functional Materials, 2008, 18, 2114-2122.	14.9	77
244	Inside Front Cover: Directed Selfâ€Assembly of Gradient Concentric Carbon Nanotube Rings (Adv. Funct.) Tj ETQ	q0 <u>0</u> 0 rgE	3T /Overlock 1
245	Bimaterial Microcantilevers as a Hybrid Sensing Platform. Advanced Materials, 2008, 20, 653-680.	21.0	172
246	Bimetallic Nanocobs: Decorating Silver Nanowires with Gold Nanoparticles. Advanced Materials, 2008, 20, 1544-1549.	21.0	125
247	Bioenabled Surfaceâ€Mediated Growth of Titania Nanoparticles. Advanced Materials, 2008, 20, 3274-3279.	21.0	64
248	Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer, 2008, 49, 5284-5293.	3.8	34
249	The architectures and surface behavior of highly branched molecules. Progress in Polymer Science, 2008, 33, 523-580.	24.7	174
250	Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials. Chemistry of Materials, 2008, 20, 7474-7485.	6.7	141
251	Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter, 2008, 4, 714.	2.7	234
252	Mechanical properties of composite polymer microstructures fabricated by interference lithography. Physical Chemistry Chemical Physics, 2008, 10, 4093.	2.8	19

#	Article	IF	Citations
253	Perforated, Freely Suspended Layer-by-Layer Nanoscale Membranes. Langmuir, 2008, 24, 5996-6006.	3.5	67
254	Polyaminoacid-Induced Growth of Metal Nanoparticles on Layer-by-Layer Templates. Chemistry of Materials, 2008, 20, 5822-5831.	6.7	49
255	Molecular Reorganization of Paired Assemblies of T-Shaped Rodâ °Coil Amphiphilic Molecule at the Airâ °Water Interface. Langmuir, 2008, 24, 3930-3936.	3.5	22
256	Toroid Morphology by ABC-Type Amphiphilic Rodâ^'Coil Molecules at the Airâ^'Water Interface. Langmuir, 2008, 24, 12340-12346.	3.5	20
257	Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission. Nanotechnology, 2008, 19, 435302.	2.6	42
258	Domain and network aggregation of CdTe quantum rods within Langmuir–Blodgett monolayers. Nanotechnology, 2008, 19, 215606.	2.6	17
259	Robust Fluorescent Response of Micropatterned Multilayered Films. Journal of Macromolecular Science - Physics, 2007, 46, 7-19.	1.0	13
260	Substrate- and Time-Dependent Photoluminescence of Quantum Dots Inside the Ultrathin Polymer LbL Film. Langmuir, 2007, 23, 4509-4515.	3.5	62
261	Robust, fluorescent, and nanoscale freestanding conjugated films. Soft Matter, 2007, 3, 432.	2.7	29
262	Thermoresponsive Reversible Behavior of Multistimuli Pluronic-Based Pentablock Copolymer at the Airâ "Water Interface. Langmuir, 2007, 23, 25-30.	3.5	49
263	Adaptive Nanomechanical Response of Stratified Polymer Brush Structures. Langmuir, 2007, 23, 265-273.	3.5	60
264	Buckling Behavior of Highly Oriented Silver Nanowires Encapsulated within Layer-by-Layer Films. Chemistry of Materials, 2007, 19, 2007-2015.	6.7	42
265	Negative Thermal Expansion in Ultrathin Plasma Polymerized Films. Chemistry of Materials, 2007, 19, 129-131.	6.7	20
266	Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys). Journal of the Royal Society Interface, 2007, 4, 1135-1143.	3.4	53
267	Photoluminescence of a Freely Suspended Monolayer of Quantum Dots Encapsulated into Layer-by-Layer Films. Langmuir, 2007, 23, 10176-10183.	3. 5	44
268	Mechanical Properties of Robust Ultrathin Silk Fibroin Films. Advanced Functional Materials, 2007, 17, 2229-2237.	14.9	355
269	Sculptured Layerâ€byâ€Layer Films. Advanced Materials, 2007, 19, 3827-3832.	21.0	32
270	Hydrogelâ€Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast. Advanced Materials, 2007, 19, 2903-2909.	21.0	137

#	Article	IF	Citations
271	Polymer–Silicon Flexible Structures for Fast Chemical Vapor Detection. Advanced Materials, 2007, 19, 4248-4255.	21.0	55
272	Single functional group interactions with individual carbon nanotubes. Nature Nanotechnology, 2007, 2, 692-697.	31.5	59
273	Synthesis and Interfacial Behavior of Amphiphilic Hyperbranched Polymers:Â Poly(ethylene) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 TF
274	Liquid-Crystalline Processing of Highly Oriented Carbon Nanotube Arrays for Thin-Film Transistors. Nano Letters, 2006, 6, 1443-1448.	9.1	157
275	Formation of Silver Nanoparticles at the Airâ^'Water Interface Mediated by a Monolayer of Functionalized Hyperbranched Molecules. Langmuir, 2006, 22, 1027-1037.	3.5	48
276	Mechanically Tunable Three-Dimensional Elastomeric Network/Air Structures via Interference Lithography. Nano Letters, 2006, 6, 740-743.	9.1	98
277	Complex Buckling Instability Patterns of Nanomembranes with Encapsulated Gold Nanoparticle Arrays. Nano Letters, 2006, 6, 2254-2259.	9.1	92
278	Langmuirâ^Blodgett Monolayers of Gold Nanoparticles with Amphiphilic Shells from V-Shaped Binary Polymer Arms. Langmuir, 2006, 22, 7011-7015.	3.5	70
279	Assembling of Dense Fluorescent Supramolecular Webs via Self-Propelled Star-Shaped Aggregates. Nano Letters, 2006, 6, 435-440.	9.1	24
280	Surface Morphologies of Langmuirâ^'Blodgett Monolayers of PEOnPSnMultiarm Star Copolymers. Langmuir, 2006, 22, 6168-6176.	3.5	41
281	Polymeric Nanolayers as Actuators for Ultrasensitive Thermal Bimorphs. Nano Letters, 2006, 6, 730-734.	9.1	88
282	Role of functionalized terminal groups in formation of nanofibrillar morphology of hyperbranched polyesters. Polymer, 2006, 47, 8137-8146.	3.8	26
283	Thermo-Optical Arrays of Flexible Nanoscale Nanomembranes Freely Suspended over Microfabricated Cavities as IR Microimagers. Chemistry of Materials, 2006, 18, 2632-2634.	6.7	66
284	Unfolding the multi-length scale domain structure of silk fibroin protein. Polymer, 2006, 47, 5821-5830.	3.8	70
285	Gradient Array of Freely Suspended Nanomembranes. Advanced Functional Materials, 2006, 16, 27-32.	14.9	16
286	Langmuir monolayers from functionalized amphiphiles with epoxy terminal groups. Thin Solid Films, 2005, 493, 237-248.	1.8	9
287	Freely Suspended Layer-by-Layer Nanomembranes: Testing Micromechanical Properties. Advanced Functional Materials, 2005, 15, 771-780.	14.9	182
288	Microtribological and Nanomechanical Properties of Switchable Y-Shaped Amphiphilic Polymer Brushes. Advanced Functional Materials, 2005, 15, 1529-1540.	14.9	61

#	Article	IF	Citations
289	Freely Suspended Gold Nanoparticle Arrays. Advanced Materials, 2005, 17, 1669-1673.	21.0	74
290	Strain-Sensitive Raman Modes of Carbon Nanotubes in Deflecting Freely Suspended Nanomembranes. Advanced Materials, 2005, 17, 2127-2131.	21.0	61
291	Self-recovery of stressed nanomembranes. Applied Physics Letters, 2005, 86, 121912.	3.3	25
292	Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes. Physical Review Letters, 2005, 95, 115503.	7.8	44
293	Encapsulating Nanoparticle Arrays into Layer-by-layer Multilayers by Capillary Transfer Lithography. Chemistry of Materials, 2005, 17, 5489-5497.	6.7	62
294	Langmuir and Grafted Monolayers of Photochromic Amphiphilic Monodendrons of Low Generations. Journal of Physical Chemistry B, 2005, 109, 20393-20402.	2.6	18
295	Functionalized (X-PEO)2-(PS-Y)2Star Block Copolymers at the Interfaces:Â Role of Terminal Groups in Surface Behavior and Morphology. Macromolecules, 2005, 38, 8765-8774.	4.8	40
296	In-situ Observation of Switchable Nanoscale Topography for Y-Shaped Binary Brushes in Fluids. Nano Letters, 2005, 5, 491-495.	9.1	58
297	Organized Monolayers of Carbosilane Dendrimers with Mesogenic Terminal Groups. Macromolecules, 2005, 38, 8028-8035.	4.8	23
298	Amphiphilic Treelike Rods at Interfaces:  Layered Stems and Circular Aggregation. Langmuir, 2005, 21, 6392-6398.	3.5	29
299	Carbon Nanotube Arrays Encapsulated into Freely Suspended Flexible Films. Chemistry of Materials, 2005, 17, 2490-2493.	6.7	44
300	Organized arrays of nanostructures in freely suspended nanomembranes. Soft Matter, 2005, 1, 334.	2.7	40
301	Local Chain Organization of Switchable Binary Polymer Brushes in Selective Solvents. , 2005, , 427-440.		1
302	High-resolution Raman microscopy of curled carbon nanotubes. Applied Physics Letters, 2004, 85, 2598-2600.	3.3	39
303	Nanomechanical Probing of Layered Nanoscale Polymer Films With Atomic Force Microscopy. Journal of Materials Research, 2004, 19, 716-728.	2.6	91
304	Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Materials, 2004, 3, 721-728.	27.5	524
305	Nanofibers from Functionalized Dendritic Molecules. Angewandte Chemie - International Edition, 2004, 43, 5246-5249.	13.8	49
306	Supramolecular Multiscale Fibers through One-Dimensional Assembly of Dendritic Molecules. Advanced Materials, 2004, 16, 2206-2212.	21.0	51

#	Article	IF	Citations
307	Some aspects of AFM nanomechanical probing of surface polymer films. European Polymer Journal, 2004, 40, 949-956.	5.4	70
308	Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Progress in Polymer Science, 2004, 29, 635-698.	24.7	544
309	Interfacial Micellar Structures from Novel Amphiphilic Star Polymers. Langmuir, 2004, 20, 9044-9052.	3.5	45
310	Synthesis and Properties of Asymmetric Heteroarm PEOn-b-PSmStar Polymers with End Functionalities. Macromolecules, 2004, 37, 7497-7506.	4.8	61
311	Amphiphilic Heteroarm PEO-b-PSmStar Polymers at the Airâ^'Water Interface:Â Aggregation and Surface Morphology. Macromolecules, 2004, 37, 6511-6522.	4.8	76
312	Surface Behavior of Amphiphilic Heteroarm Star-Block Copolymers with Asymmetric Architecture. Langmuir, 2004, 20, 9423-9427.	3.5	36
313	Assembling of Amphiphilic Highly Branched Molecules in Supramolecular Nanofibers. Journal of the American Chemical Society, 2004, 126, 9675-9684.	13.7	113
314	Ultrathin Binary Grafted Polymer Layers with Switchable Morphology. Langmuir, 2004, 20, 10046-10054.	3.5	48
315	Combing and Bending of Carbon Nanotube Arrays with Confined Microfluidic Flow on Patterned Surfaces. Journal of Physical Chemistry B, 2004, 108, 4385-4393.	2.6	81
316	Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon. Physical Review Letters, 2004, 92, 065502.	7.8	113
317	Collective and Individual Plasmon Resonances in Nanoparticle Films Obtained by Spin-Assisted Layer-by-Layer Assembly. Langmuir, 2004, 20, 882-890.	3.5	225
318	Synthetic and bio-hybrid nanoscale layers with tailored surface functionalities. Progress in Organic Coatings, 2003, 47, 288-291.	3.9	5
319	Reorganization of Binary Polymer Brushes:Â Reversible Switching of Surface Microstructures and Nanomechanical Properties. Macromolecules, 2003, 36, 7244-7255.	4.8	165
320	Molecular Reorganizations of Rodâ^'Coil Molecules on a Solid Surface. Langmuir, 2003, 19, 495-499.	3.5	27
321	Y-Shaped Polymer Brushes:Â Nanoscale Switchable Surfaces. Langmuir, 2003, 19, 7832-7836.	3.5	130
322	Molecular Stiffness of Individual Hyperbranched Macromolecules at Solid Surfaces. Macromolecules, 2003, 36, 2825-2831.	4.8	51
323	Direct Measurement of Thermoelastic Properties of Glassy and Rubbery Polymer Brush Nanolayers Grown by "Grafting-from―Approach. Langmuir, 2003, 19, 6126-6134.	3.5	67
324	Biomolecular Stress-Sensitive Gauges:Â Surface-Mediated Immobilization of Mechanosensitive Membrane Protein. Journal of the American Chemical Society, 2003, 125, 12722-12723.	13.7	20

#	Article	IF	Citations
325	Amphiphilic Dendritic Molecules:Â Hyperbranched Polyesters with Alkyl-Terminated Branches. Macromolecules, 2003, 36, 3101-3110.	4.8	77
326	Y-Shaped Amphiphilic Brushes with Switchable Micellar Surface Structures. Journal of the American Chemical Society, 2003, 125, 15912-15921.	13.7	123
327	Nanoscale stiffness of individual dendritic molecules and their aggregates. Applied Physics Letters, 2003, 82, 907-909.	3.3	31
328	Triplex molecular layers with nonlinear nanomechanical response. Applied Physics Letters, 2002, 80, 4825-4827.	3.3	21
329	Microstructure of Amphiphilic Monodendrons at the Airâ^'Water Interface. Journal of Physical Chemistry B, 2002, 106, 11277-11284.	2.6	28
330	Molecular Packing of Amphiphiles with Crown Polar Heads at the Airâ^'Water Interface. Journal of Physical Chemistry B, 2002, 106, 7246-7251.	2.6	27
331	Amphiphilic Hairy Disks with Branched Hydrophilic Tails and a Hexa-peri-hexabenzocoronene Core. Journal of the American Chemical Society, 2002, 124, 9121-9128.	13.7	68
332	Ultrathin Triblock Copolymer Films on Tailored Polymer Brushes. Macromolecules, 2002, 35, 5963-5973.	4.8	17
333	Hyperbranched Molecules with Epoxy-Functionalized Terminal Branches:Â Grafting to a Solid Surface. Macromolecules, 2002, 35, 5131-5139.	4.8	32
334	Biological Thermal Detection:Â Micromechanical and Microthermal Properties of Biological Infrared Receptors. Biomacromolecules, 2002, 3, 106-115.	5.4	36
335	Hyperbranched Polymer Layers as Multifunctional Interfaces. Langmuir, 2002, 18, 3408-3412.	3.5	36
336	Nanomechanical Analysis of Polymer Surfaces. , 2002, 2, 241-247.		19
337	Microthermal analysis of polymeric materials. Thermochimica Acta, 2002, 395, 151-158.	2.7	39
338	Oily Nanocoatings. Tribology Letters, 2002, 12, 101-104.	2.6	6
339	Biological Thermal Detection in Infrared Imaging Snakes. 1. Ultramicrostructure of Pit Receptor Organs. Biomacromolecules, 2001, 2, 757-764.	5.4	20
340	Ultramicrostructure and Microthermomechanics of Biological IR Detectors:Â Materials Properties from a Biomimetic Perspective. Biomacromolecules, 2001, 2, 304-312.	5.4	21
341	Surface Nanomechanical Properties of Polymer Nanocomposite Layers. Langmuir, 2001, 17, 6715-6719.	3.5	66
342	Bilayer nanocomposite molecular coatings from elastomeric/rigid polymers: fabrication, morphology, and micromechanical properties. Macromolecular Symposia, 2001, 167, 227-242.	0.7	14

#	Article	IF	CITATIONS
343	Surface force spectroscopy of elastomeric nanoscale films. Macromolecular Symposia, 2001, 167, 167-175.	0.7	23
344	Nanotribological behavior of tethered reinforced polymer nanolayer coatings. Tribology International, 2001, 34, 327-333.	5.9	25
345	Molecular Lubricants and Glues for Micro- and Nanodevices. Advanced Materials, 2001, 13, 95-108.	21.0	186
346	Nanocomposite polymer layers for molecular tribology. Tribology Letters, 2001, 10, 127-132.	2.6	34
347	Intralayer reorganization of photochromic molecular films. Journal of Materials Science Letters, 2001, 20, 873-876.	0.5	20
348	Hyperbranched Polyesters on Solid Surfaces. Langmuir, 2001, 17, 5924-5931.	3.5	44
349	Bilayer nanocomposite molecular coatings from elastomeric/rigid polymers: fabrication, morphology, and micromechanical properties., 2001, 167, 227.		1
350	Molecular Lubricants and Glues for Micro- and Nanodevices. , 2001, 13, 95.		1
351	Dynamic microprobing of viscoelastic polymer properties. Polymer International, 2000, 49, 441-444.	3.1	56
352	Polystyrene Layers Grafted to Epoxy-Modified Silicon Surfaces. Macromolecules, 2000, 33, 1043-1048.	4.8	176
353	Microthermomechanical Probing of Thin Composite Polymer Films. ACS Symposium Series, 2000, , 254-273.	0.5	2
354	Thermoplastic Elastomer Monolayers Grafted to a Functionalized Silicon Surface. Macromolecules, 2000, 33, 7629-7638.	4.8	55
355	Epoxy-Terminated Self-Assembled Monolayers:Â Molecular Glues for Polymer Layers. Langmuir, 2000, 16, 504-516.	3.5	187
356	Photoresponsive Langmuir Monolayers from Azobenzene-Containing Dendrons. Langmuir, 2000, 16, 10569-10572.	3.5	47
357	Microthermal Probing of Ultrathin Polymer Films. High Performance Polymers, 2000, 12, 603-610.	1.8	25
358	Dynamic microprobing of viscoelastic polymer properties. Polymer International, 2000, 49, 441-444.	3.1	3
359	Nano-Tribological and Wear Behavior of Boric Acid Solid Lubricant©. Tribology Transactions, 1999, 42, 180-185.	2.0	8
360	Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy. Thin Solid Films, 1999, 339, 249-257.	1.8	106

#	Article	IF	Citations
361	Nanoscale design of snake skin for reptation locomotions via friction anisotropy. Journal of Biomechanics, 1999, 32, 477-484.	2.1	146
362	Dewettingâ€Induced Formation of Hexagonal Microstructures in Discotic Guest–Host Systems. Advanced Materials, 1999, 11, 246-250.	21.0	12
363	Probing Surface Microthermal Properties by Scanning Thermal Microscopy. Langmuir, 1999, 15, 8340-8343.	3 . 5	53
364	Sticky Molecular Surfaces:Â Epoxysilane Self-Assembled Monolayers. Langmuir, 1999, 15, 3029-3032.	3.5	123
365	Scanning Force Microscopy of Micromechanical Properties of Polymers. ACS Symposium Series, 1999, , 177-189.	0.5	4
366	Probing of Micromechanical Properties of Compliant Polymeric Materials. Journal of Materials Science, 1998, 33, 4905-4909.	3.7	85
367	Dendritic Macromolecules at Interfaces. Advanced Materials, 1998, 10, 253-257.	21.0	205
368	On the structure of polyamidoamine dendrimer monolayers. Polymer, 1998, 39, 5249-5252.	3.8	83
369	Adhesive and Friction Forces between Chemically Modified Silicon and Silicon Nitride Surfaces. Langmuir, 1998, 14, 446-455.	3.5	311
370	Atomic Force Microscopy and X-ray Reflectivity Studies of Albumin Adsorbed onto Self-Assembled Monolayers of Hexadecyltrichlorosilane. Langmuir, 1998, 14, 4535-4544.	3.5	115
371	Micromechanical Properties of Elastic Polymeric Materials As Probed by Scanning Force Microscopy. Langmuir, 1998, 14, 2606-2609.	3 . 5	197
372	Friction Force Microscopy Measurements: Normal and Torsional Spring Constants for V-Shaped Cantilevers. Journal of Tribology, 1998, 120, 814-819.	1.9	69
373	Nanotribological Properties of Organic Boundary Lubricants: Langmuir Films Versus Self-Assembled Monolayers. Journal of Tribology, 1998, 120, 489-495.	1.9	82
374	Organized Multilayer Films of Charged Organic Latexes. ACS Symposium Series, 1998, , 220-232.	0.5	8
375	Scanning Probe Microscopy in Polymers: Introductory Notes. ACS Symposium Series, 1998, , 2-30.	0.5	6
376	pH Variations of Surface Forces as Probed by Chemically Modified Tips. ACS Symposium Series, 1998, , 321-341.	0.5	2
377	Scanning Probe Microscopy of Polymer Surfaces. Rubber Chemistry and Technology, 1997, 70, 430-467.	1.2	164
378	Electrostatic Deposition of Polyionic Monolayers on Charged Surfacesâ€. Macromolecules, 1997, 30, 6615-6625.	4.8	125

#	Article	IF	Citations
379	Self-Assembled Multilayer Films from Dendrimers. Langmuir, 1997, 13, 2171-2176.	3.5	317
380	Assembly of supramolecular polymers in ultrathin films. Progress in Polymer Science, 1997, 22, 247-311.	24.7	181
381	Side chain liquid crystalline polymers at interfaces. Progress in Polymer Science, 1997, 22, 1089-1132.	24.7	36
382	Columnar discotics for light emitting diodes. Advanced Materials, 1997, 9, 48-52.	21.0	67
383	Organic Molecular Films under Shear Forces:Â Fluid and Solid Langmuir Monolayers. Langmuir, 1996, 12, 4840-4849.	3.5	102
384	Interfacial Gradient of Molecular Ordering in Organized Films of a Liquid Crystalline Discotic Polymer. Langmuir, 1996, 12, 2825-2829.	3.5	8
385	Structural Characterization of Biphenyl Ester-Based LC Molecules:Â Peculiarities of Cyclic Siloxane-Based Materials. Macromolecules, 1996, 29, 8717-8725.	4.8	10
386	Molecular Association in Nematic Phases of Cyclic Liquid Crystal Oligomers. Macromolecules, 1996, 29, 8706-8716.	4.8	9
387	Nanotribological Properties of Composite Molecular Films:  C60 Anchored to a Self-Assembled Monolayer. Langmuir, 1996, 12, 3905-3911.	3.5	87
388	Discotic Twin and Triple Molecules with Charge-Transfer Interactions in Langmuirâ^'Blodgett Films. Langmuir, 1996, 12, 754-757.	3.5	24
389	Reconstruction of fluid Langmuir monolayers under shear forces. Tribology Letters, 1996, 2, 71.	2.6	8
390	Scanning probe microscopy of organic and polymeric films: from self-assembled monolayers to composite multilayers. Polymer, 1995, 36, 1791-1808.	3.8	162
391	Self-Organization of Polymer Brush Layers in a Poor Solvent. Journal De Physique II, 1995, 5, 1441-1456.	0.9	31
392	Periodic surface instabilities in stressed polymer solids. Physical Review B, 1995, 51, 6089-6092.	3.2	8
393	Surface Morphology of Syndiotactic Polypropylene Single Crystals Observed by Atomic Force Microscopy. Macromolecules, 1995, 28, 1370-1376.	4.8	38
394	Atomic Force Microscopy of C60 Tethered to a Self-Assembled Monolayer. Langmuir, 1994, 10, 996-999.	3.5	74
395	Stability and Modification of Polyglutamate Langmuir-Blodgett Bilayer Films. Macromolecules, 1994, 27, 1274-1280.	4.8	28
396	Atomic force microscopy of ordered monolayer films from discotic liquid crystals. Langmuir, 1993, 9, 2141-2144.	3.5	26

#	Article	IF	Citations
397	Morphology of Langmuir-Blodgett films from polyglutamate observed by atomic force microscopy. Langmuir, 1993, 9, 3538-3547.	3.5	26
398	Packing of columns in Langmuir-Blodgett films of discotic mixtures with charge-transfer interactions. Langmuir, 1993, 9, 614-618.	3.5	54
399	The structural order of some novel ionic polymers, 2. Models of molecular packing. Die Makromolekulare Chemie, 1992, 193, 1829-1838.	1.1	17
400	Columnar ordering of liquid-crystalline discotics in Langmuir-Blodgett films. Langmuir, 1992, 8, 2279-2283.	3.5	92
401	Molecular packing at surfaces of oriented polyimide fiber and film observed by atomic force microscopy. Polymer Bulletin, 1992, 29, 557-563.	3.3	9
402	Molecular packing and conformation of liquid crystalline polyesters with bulky side groups. Polymer, 1992, 33, 2605-2610.	3.8	6
403	The structural order of some novel ionic polymers, 1. X-ray scattering studies. Die Makromolekulare Chemie, 1992, 193, 1815-1827.	1.1	25
404	One―and twoâ€dimensional order in multilayered structures of liquid rystalline polymers. Makromolekulare Chemie Macromolecular Symposia, 1991, 44, 109-116.	0.6	1
405	Order in amphiphilic polyimides: Cast and Langmuir films. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 277-282.	0.6	3
406	Supramolecular structure of disperse phase of detergent oil additives. Chemistry and Technology of Fuels and Oils, 1990, 26, 311-315.	0.5	0
407	Structure of micelles of overbased salicylate lube oil additives. Chemistry and Technology of Fuels and Oils, 1989, 25, 273-275.	0.5	1
408	Supermolecular organization in liquid crystalline polymers. Acta Polymerica, 1985, 36, 403-412.	0.9	21
409	Recent Successes in Structural Studies of Thermotropic Liquid Crystalline Polymers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1984, 24, 173-238.	2.2	26
410	Microphase state of oligobutadienediol-based polyurethaneureas. Journal of Applied Polymer Science, 1984, 29, 1919-1927.	2.6	6
411	Thermal effects on liquid-crystalline order in polymers with mesogenic side groups. Journal of Polymer Science, Polymer Physics Edition, 1984, 22, 41-47.	1.0	17
412	Changes of liquid-crystalline polymer structure with temperature. Polymer Bulletin, 1984, 11, 561-564.	3.3	4
413	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1983, 4, 595-599.	1.1	9
414	\tilde{A} "nderungen der struktur von fl \tilde{A}^{1} /ssing-kristallinen polymeren mit mesogenen seitengruppen durch temperatur \tilde{A} r derung. Die Makromolekulare Chemie, 1982, 183, 2009-2019.	1.1	13

#	Article	IF	CITATIONS
415	Zur Struktur von p-n-AlkoxybenzoesÃ ¤ reestern im kristallin-flüssigen Zustand. Acta Polymerica, 1982, 33, 63-69.	0.9	19
416	Micro- and Nanoscale Local Thermal Analysis. , 0, , 615-649.		2