Benjamin Marie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Culture Collection of Cyanobacteria and Microalgae at the French National Museum of Natural History: A Century Old But Still Alive and Kicking! Including in Memoriam: Professor Alain Couté. Cryptogamie, Algologie, 2022, 43, .	0.9	11
2	Fish metabolome from sub-urban lakes of the Paris area (France) and potential influence of noxious metabolites produced by cyanobacteria. Chemosphere, 2022, 296, 134035.	8.2	8
3	The success of the bloom-forming cyanobacteria Planktothrix: Genotypes variability supports variable responses to light and temperature stress. Harmful Algae, 2022, 117, 102285.	4.8	2
4	Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environmental Research, 2021, 193, 110590.	7.5	36
5	Anti-Inflammatory, Antioxidant, and Wound-Healing Properties of Cyanobacteria from Thermal Mud of Balaruc-Les-Bains, France: A Multi-Approach Study. Biomolecules, 2021, 11, 28.	4.0	20
6	Dynamics of the Metabolome of Aliinostoc sp. PMC 882.14 in Response to Light and Temperature Variations. Metabolites, 2021, 11, 745.	2.9	6
7	Light stress in green and red Planktothrix strains: The orange carotenoid protein and its related photoprotective mechanism. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148037.	1.0	7
8	Deciphering shell proteome within different Baltic populations of mytilid mussels illustrates important local variability and potential consequences in the context of changing marine conditions. Science of the Total Environment, 2020, 745, 140878.	8.0	4
9	Microbiome-Aware Ecotoxicology of Organisms: Relevance, Pitfalls, and Challenges. Frontiers in Public Health, 2020, 8, 407.	2.7	31
10	Disentangling of the ecotoxicological signal using "omics―analyses, a lesson from the survey of the impact of cyanobacterial proliferations on fishes. Science of the Total Environment, 2020, 736, 139701.	8.0	10
11	Toxicity, transfer and depuration of anatoxin-a (cyanobacterial neurotoxin) in medaka fish exposed by single-dose gavage. Aquatic Toxicology, 2020, 222, 105422.	4.0	15
12	Draft Genome Sequence of the Toxic Freshwater Microcystis aeruginosa Strain PMC 728.11 (Cyanobacteria, Chroococcales). Microbiology Resource Announcements, 2020, 9, .	0.6	5
13	Insights into the Diversity of Secondary Metabolites of Planktothrix Using a Biphasic Approach Combining Global Genomics and Metabolomics. Toxins, 2019, 11, 498.	3.4	24
14	Development of a new extraction method based on high-intensity ultra-sonication to study RNA regulation of the filamentous cyanobacteria Planktothrix. PLoS ONE, 2019, 14, e0222029.	2.5	12
15	Subcellular localization of microcystin in the liver and the gonads of medaka fish acutely exposed to microcystin-LR. Toxicon, 2019, 159, 14-21.	1.6	16
16	Response of Fish Gut Microbiota to Toxin-Containing Cyanobacterial Extracts: A Microcosm Study on the Medaka (<i>Oryzias latipes</i>). Environmental Science and Technology Letters, 2019, 6, 341-347.	8.7	31
17	Natural Products from Cyanobacteria: Focus on Beneficial Activities. Marine Drugs, 2019, 17, 320.	4.6	189
18	Global Metabolomic Characterizations of Microcystis spp. Highlights Clonal Diversity in Natural Bloom-Forming Populations and Expands Metabolite Structural Diversity. Frontiers in Microbiology, 2019, 10, 791.	3.5	40

BENJAMIN MARIE

#	Article	IF	CITATIONS
19	Specificity of the metabolic signatures of fish from cyanobacteria rich lakes. Chemosphere, 2019, 226, 183-191.	8.2	18
20	Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: AAproteomic and metabolomic study on liver. Environmental Pollution, 2018, 234, 523-537.	7.5	51
21	Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. GigaScience, 2018, 7, .	6.4	22
22	Neurotoxin stress-driven evolution in scallop genome. Toxicon, 2018, 150, 251-252.	1.6	0
23	Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida <i>Elliptio complanata</i> and <i>Villosa lienosa</i> . Journal of the Royal Society Interface, 2017, 14, 20160846.	3.4	72
24	Global metabolome changes induced by cyanobacterial blooms in three representative fish species. Science of the Total Environment, 2017, 590-591, 333-342.	8.0	14
25	Metabolic changes in Medaka fish induced by cyanobacterial exposures in mesocosms: an integrative approach combining proteomic and metabolomic analyses. Scientific Reports, 2017, 7, 4051.	3.3	13
26	Insights from the Shell Proteome: Biomineralization to Adaptation. Molecular Biology and Evolution, 2017, 34, 66-77.	8.9	120
27	First proteomic analyses of the dorsal and ventral parts of the Sepia officinalis cuttlebone. Journal of Proteomics, 2017, 150, 63-73.	2.4	25
28	Unveiling the Evolution of Bivalve Nacre Proteins by Shell Proteomics of Unionoidae. Key Engineering Materials, 2016, 672, 158-167.	0.4	6
29	Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study. Marine Genomics, 2016, 27, 69-74.	1.1	47
30	Gender-Specific Toxicological Effects of Chronic Exposure to Pure Microcystin-LR or Complex <i>Microcystis aeruginosa</i> Extracts on Adult Medaka Fish. Environmental Science & Technology, 2016, 50, 8324-8334.	10.0	50
31	An Antarctic molluscan biomineralisation tool-kit. Scientific Reports, 2016, 6, 36978.	3.3	17
32	An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity. Environmental Pollution, 2016, 219, 119-131.	7.5	46
33	Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach. Scientific Reports, 2016, 6, 32459.	3.3	43
34	Metazoan calcium carbonate biomineralizations: macroevolutionary trends – challenges for the coming decade. Bulletin - Societie Geologique De France, 2014, 185, 217-232.	2.2	11
35	The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization. Frontiers in Zoology, 2014, 11, .	2.0	78
36	The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 168, 76-85.	1.6	31

Benjamin Marie

#	Article	IF	CITATIONS
37	The shellâ€forming proteome of <i><scp>L</scp>ottiaÂgigantea</i> reveals both deep conservations and lineageâ€specific novelties. FEBS Journal, 2013, 280, 214-232.	4.7	109
38	Toxicity of harmful cyanobacterial blooms to bream and roach. Toxicon, 2013, 71, 121-127.	1.6	22
39	The Skeletal Proteome of the Coral Acropora millepora: The Evolution of Calcification by Co-Option and Domain Shuffling. Molecular Biology and Evolution, 2013, 30, 2099-2112.	8.9	155
40	Biomineralization toolkit: The importance of sample cleaning prior to the characterization of biomineral proteomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2144-E2146.	7.1	30
41	Proteomics of CaCO ₃ biomineral-associated proteins: How to properly address their analysis. Proteomics, 2013, 13, 3109-3116.	2.2	26
42	Living in a hot redox soup: antioxidant defences of the hydrothermal worm Alvinella pompejana. Aquatic Biology, 2013, 18, 217-228.	1.4	28
43	Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20986-20991.	7.1	287
44	Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: Insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). Aquatic Toxicology, 2012, 114-115, 39-48.	4.0	58
45	Analysis of low complex region peptides derived from mollusk shell matrix proteins using CID, highâ€energy collisional dissociation, and electron transfer dissociation on an LTQâ€orbitrap: Implications for peptide to spectrum match. Proteomics, 2012, 12, 3069-3075.	2.2	1
46	The formation and mineralization of mollusk shell. Frontiers in Bioscience - Scholar, 2012, S4, 1099-1125.	2.1	311
47	Identification of Two Carbonic Anhydrases in the Mantle of the <scp>E</scp> uropean Abalone <i><scp>H</scp>aliotis tuberculata</i> (<scp>G</scp> astropoda, Haliotidae): Phylogenetic Implications. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 353-367.	1.3	30
48	Novel Molluskan Biomineralization Proteins Retrieved from Proteomics: A Case Study with Upsalin. ChemBioChem, 2012, 13, 1067-1078.	2.6	17
49	Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters. Amino Acids, 2012, 42, 2009-2017.	2.7	28
50	Proteomic Strategy for Identifying Mollusc Shell Proteins Using Mild Chemical Degradation and Trypsin Digestion of Insoluble Organic Shell Matrix: A Pilot Study on Haliotis tuberculata. Marine Biotechnology, 2012, 14, 446-458.	2.4	22
51	Nautilinâ€63, a novel acidic glycoprotein from the shell nacre of <i>Nautilus macromphalus</i> . FEBS Journal, 2011, 278, 2117-2130.	4.7	26
52	Proteomic Identification of Novel Proteins from the Calcifying Shell Matrix of the Manila Clam Venerupis Philippinarum. Marine Biotechnology, 2011, 13, 955-962.	2.4	44
53	Novel Proteins from the Calcifying Shell Matrix of the Pacific Oyster Crassostrea gigas. Marine Biotechnology, 2011, 13, 1159-1168.	2.4	71
54	Molecular Evolution of Mollusc Shell Proteins: Insights from Proteomic Analysis of the Edible Mussel Mytilus. Journal of Molecular Evolution, 2011, 72, 531-546.	1.8	68

Benjamin Marie

#	Article	IF	CITATIONS
55	<i>Pmarg</i> â€Pearlin is a Matrix Protein Involved in Nacre Framework Formation in the Pearl Oyster <i>Pinctada margaritifera</i> . ChemBioChem, 2011, 12, 2033-2043.	2.6	61
56	Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics, 2010, 11, 613.	2.8	208
57	Proteomic Analysis of the Acidâ€Soluble Nacre Matrix of the Bivalve <i>Unio pictorum</i> : Detection of Novel Carbonic Anhydrase and Putative Protease Inhibitor Proteins. ChemBioChem, 2010, 11, 2138-2147.	2.6	36
58	Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Science, 2010, 8, 54.	1.7	119
59	Characterization of Crustacyanin-A2 Subunit as a Component of the Organic Matrix of Gastroliths from the Crayfish Cherax quadricarinatus. Materials Research Society Symposia Proceedings, 2009, 1187, 61.	0.1	3
60	Nacre Evolution : A Proteomic Approach. Materials Research Society Symposia Proceedings, 2009, 1187, 13.	0.1	5
61	Evolution of Nacre: Biochemistry and Proteomics of the Shell Organic Matrix of the Cephalopod <i>Nautilus macromphalus</i> . ChemBioChem, 2009, 10, 1495-1506.	2.6	66
62	Nacre Calcification in the Freshwater Mussel <i>Unio pictorum</i> : Carbonic Anhydrase Activity and Purification of a 95 kDa Calciumâ€Binding Glycoprotein. ChemBioChem, 2008, 9, 2515-2523.	2.6	56
63	Shell repair process in the green ormer Haliotis tuberculata: A histological and microstructural study. Tissue and Cell, 2008, 40, 207-218.	2.2	58
64	Molluscan Shell Proteins: Primary Structure, Origin, and Evolution. Current Topics in Developmental Biology, 2007, 80, 209-276.	2.2	442
65	The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). FEBS Journal, 2007, 274, 2933-2945.	4.7	90
66	Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Marine Biology, 2006, 150, 273-284.	1.5	59
67	Escarpia southwardae sp. nov., a new species of vestimentiferan tubeworm (Annelida, Siboglinidae) from West African cold seeps. Canadian Journal of Zoology, 2004, 82, 980-999.	1.0	62
68	Synthesis of Calcium Carbonate Biological Materials: How Many Proteins are Needed?. Key Engineering Materials, 0, 614, 52-61.	0.4	7
69	Carbonic Anhydrase and Metazoan Biocalcification: A Focus on Molluscs. Key Engineering Materials, 0, 672, 151-157.	0.4	10
70	Heavy Metals in Mollusc Shells: A Quick Method for their Detection. Key Engineering Materials, 0, 672, 340-345.	0.4	3