List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336869/publications.pdf Version: 2024-02-01

IVAN BOCESKI

#	Article	IF	CITATIONS
1	The jasmonate biosynthesis Gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress. Plant Science, 2022, 316, 111156.	3.6	8
2	Calcium and redox signals at mitochondrial interfaces: A nanoview perspective. Cell Calcium, 2022, 103, 102550.	2.4	0
3	NFATc1 signaling drives chronic ER stress responses to promote NAFLD progression. Gut, 2022, 71, 2561-2573.	12.1	15
4	Redoxing PTPN22 activity. ELife, 2022, 11, .	6.0	0
5	Persister state-directed transitioning and vulnerability in melanoma. Nature Communications, 2022, 13,	12.8	20
6	STIM1 Mediates Calcium-Dependent Epigenetic Reprogramming in Pancreatic Cancer. Cancer Research, 2021, 81, 2943-2955.	0.9	13
7	Peroxisomes contribute to intracellular calcium dynamics in cardiomyocytes and non-excitable cells. Life Science Alliance, 2021, 4, e202000987.	2.8	9
8	Protein Signatures of NK Cell–Mediated Melanoma Killing Predict Response to Immunotherapies. Cancer Research, 2021, 81, 5540-5554.	0.9	5
9	The Roles of Extracellular Vesicles in Malignant Melanoma. Cells, 2021, 10, 2740.	4.1	16
10	In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biology, 2021, 48, 102178.	9.0	22
11	Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry. Cell Reports, 2020, 33, 108292.	6.4	19
12	Redox regulation of the mitochondrial calcium transport machinery. Current Opinion in Physiology, 2020, 17, 138-148.	1.8	1
13	A mitochondria-targeted coenzyme Q peptoid induces superoxide dismutase and alleviates salinity stress in plant cells. Scientific Reports, 2020, 10, 11563.	3.3	7
14	COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria. Journal of Molecular Biology, 2020, 432, 2067-2079.	4.2	28
15	Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metabolism, 2020, 31, 642-653.e6.	16.2	202
16	Redox signals at the <scp>ER</scp> –mitochondria interface control melanoma progression. EMBO Journal, 2019, 38, e100871.	7.8	59
17	A Peptoid Delivers CoQ-derivative to Plant Mitochondria via Endocytosis. Scientific Reports, 2019, 9, 9839.	3.3	4
18	Blue and Long-Wave Ultraviolet Light Induce in vitro Neutrophil Extracellular Trap (NET) Formation. Frontiers in Immunology, 2019, 10, 2428.	4.8	26

#	Article	IF	CITATIONS
19	Measuring Calcium and ROS by Genetically Encoded Protein Sensors and Fluorescent Dyes. Methods in Molecular Biology, 2019, 1925, 183-196.	0.9	3
20	Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium. Frontiers in Physiology, 2019, 10, 272.	2.8	5
21	O2 affects mitochondrial functionality ex vivo. Redox Biology, 2019, 22, 101152.	9.0	22
22	Reaction-diffusion model for STIM-ORAI interaction: The role of ROS and mutations. Journal of Theoretical Biology, 2019, 470, 64-75.	1.7	10
23	The Calmodulin Binding Region of the Synaptic Vesicle Protein Mover Is Required for Homomeric Interaction and Presynaptic Targeting. Frontiers in Molecular Neuroscience, 2019, 12, 249.	2.9	8
24	Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells. Antioxidants and Redox Signaling, 2018, 29, 501-517.	5.4	14
25	AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nature Communications, 2018, 9, 3489.	12.8	55
26	The role of the mitochondrial calcium uniporter (MCU) complex in cancer. Pflugers Archiv European Journal of Physiology, 2018, 470, 1149-1163.	2.8	81
27	Measuring Mitochondrial ROS in Mammalian Cells with a Genetically Encoded Protein Sensor. Bio-protocol, 2018, 8, e2705.	0.4	1
28	Low STAT3 expression sensitizes to toxic effects of Î ² -adrenergic receptor stimulation in peripartum cardiomyopathy. European Heart Journal, 2017, 38, ehw086.	2.2	87
29	Bystander cells enhance NK cytotoxic efficiency by reducing search time. Scientific Reports, 2017, 7, 44357.	3.3	16
30	Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription. Science Signaling, 2017, 10, .	3.6	68
31	Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 219-225.	2.5	19
32	H2O2 dynamics in the malaria parasite Plasmodium falciparum. PLoS ONE, 2017, 12, e0174837.	2.5	31
33	The role of Orai–STIM calcium channels in melanocytes and melanoma. Journal of Physiology, 2016, 594, 2825-2835.	2.9	29
34	The mitochondrial calcium uniporter regulates breast cancer progression via <scp>HIF</scp> ″α. EMBO Molecular Medicine, 2016, 8, 569-585.	6.9	195
35	An EPR and DFT study on the primary radical formed in hydroxylation reactions of 2,6-dimethoxy-1,4-benzoquinone. Molecular Physics, 2016, 114, 1856-1866.	1.7	1
36	Imaging calcium and redox signals using genetically encoded fluorescent indicators. Cell Calcium, 2016, 60, 55-64.	2.4	27

#	Article	IF	CITATIONS
37	Characterizing electrode reactions by multisampling the current in square-wave voltammetry. Electrochimica Acta, 2016, 213, 520-528.	5.2	23
38	New insights into the chemistry of Coenzyme Q-0: A voltammetric and spectroscopic study. Bioelectrochemistry, 2016, 111, 100-108.	4.6	7
39	Thiol dependent intramolecular locking of Orai1 channels. Scientific Reports, 2016, 6, 33347.	3.3	31
40	A calcium-redox feedback loop controls human monocyte immune responses: The role of ORAI Ca ²⁺ channels. Science Signaling, 2016, 9, ra26.	3.6	55
41	Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and Medicine, 2016, 94, 157-160.	2.9	48
42	Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations. Experimental Dermatology, 2015, 24, 155-157.	2.9	41
43	Influence of extracellular magnesium on phagocytosis and free cytosolic Mg levels in differentiated U937 and MH-S cells. Magnesium Research, 2015, 28, 23-31.	0.5	2
44	Facilitation of Orai3 targeting and store-operated function by Orai1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1541-1550.	4.1	45
45	A calcium-accumulating region, CAR, in the channel Orai1 enhances Ca ²⁺ permeation and SOCE-induced gene transcription. Science Signaling, 2015, 8, ra131.	3.6	51
46	Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metabolism, 2015, 22, 472-484.	16.2	307
47	Redox regulation of T-cell receptor signaling. Biological Chemistry, 2015, 396, 555-569.	2.5	41
48	Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors. Journal of Biological Chemistry, 2015, 290, 7369-7387.	3.4	85
49	The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca2+ Uptake. Cell Metabolism, 2015, 22, 721-733.	16.2	154
50	Differential Redox Regulation of Ca2+ Signaling and Viability in Normal and Malignant Prostate Cells. Biophysical Journal, 2015, 109, 1410-1419.	0.5	36
51	Inverse regulation of melanoma growth and migration by <scp>O</scp> rai1/ <scp>STIM</scp> 2â€dependent calcium entry. Pigment Cell and Melanoma Research, 2014, 27, 442-453.	3.3	84
52	Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nature Communications, 2014, 5, 5222.	12.8	207
53	Orai3 Dominantly Modulates Redox Sensitivity and Requires Orai1 to Localize to Microdomains of Store-Operated Activation. Biophysical Journal, 2014, 106, 316a-317a.	0.5	0
54	Icrac in Human Primary Prostate Epithelial Cells. Biophysical Journal, 2014, 106, 317a.	0.5	0

#	Article	IF	CITATIONS
55	Redox Regulation of Ion Channels. Antioxidants and Redox Signaling, 2014, 21, 859-862.	5.4	56
56	Identification of Novel Hydroxyl-Benzoquinones as Redox Switchable Calcium Chelators and Potent Biological Antioxidants. Biophysical Journal, 2013, 104, 607a.	0.5	0
57	Squareâ€Wave Voltammetry: A Review on the Recent Progress. Electroanalysis, 2013, 25, 2411-2422.	2.9	184
58	Reverse-Mode of the Mitochondrial Transhydrogenase Consumes NADPH and Provokes Oxidative Stress in Response to Elevated Cardiac Workload. Biophysical Journal, 2013, 104, 658a.	0.5	0
59	Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell, 2013, 23, 811-825.	16.8	553
60	Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Scientific Reports, 2013, 3, 1865.	3.3	40
61	ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer. Oncotarget, 2013, 4, 2096-2107.	1.8	43
62	ORAI1 Ca2+ Channels Control Endothelin-1-Induced Mitogenesis and Melanogenesis in Primary Human Melanocytes. Journal of Investigative Dermatology, 2012, 132, 1443-1451.	0.7	54
63	ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai. Journal of Physiology, 2012, 590, 4193-4200.	2.9	44
64	Can We See PIP3 and Hydrogen Peroxide with a Single Probe?. Antioxidants and Redox Signaling, 2012, 17, 505-512.	5.4	20
65	Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. Journal of Solid State Electrochemistry, 2012, 16, 2315-2328.	2.5	69
66	Calcium Binding and Transport by Coenzyme Q. Journal of the American Chemical Society, 2011, 133, 9293-9303.	13.7	64
67	Mitochondrial Transhydrogenase: Yin and Yang of Antioxidative Capacity in Cardiac Myocytes. Biophysical Journal, 2011, 100, 462a.	0.5	0
68	Redox regulation of calcium ion channels: Chemical and physiological aspects. Cell Calcium, 2011, 50, 407-423.	2.4	108
69	ATP modulates Ca 2+ uptake by TRPV6 and is counteracted by isoformâ€specific phosphorylation. FASEB Journal, 2010, 24, 425-435.	O.5	22
70	Differential Redox Regulation of ORAI Ion Channels: A Mechanism to Tune Cellular Calcium Signaling. Science Signaling, 2010, 3, ra24.	3.6	214
71	Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert Review of Clinical Pharmacology, 2010, 3, 291-303.	3.1	29
72	Differential Redox Regulation of ORAI Channels: A Mechanism to Tune T-Cell Responses. Biophysical Journal, 2010, 98, 212a-213a.	0.5	0

#	Article	IF	CITATIONS
73	Protein-film voltammetry: A theoretical study of the temperature effect using square-wave voltammetry. Biophysical Chemistry, 2008, 137, 49-55.	2.8	25
74	A new rapid and simple method to determine the kinetics of electrode reactions of biologically relevant compounds from the half-peak width of the square-wave voltammograms. Biophysical Chemistry, 2008, 138, 130-137.	2.8	26
75	Redox properties of the calcium chelator Fura-2 in mimetic biomembranes. Cell Calcium, 2008, 43, 615-621.	2.4	4
76	Probing the redox activity of T-lymphocytes deposited at electrode surfaces with voltammetric methods. Clinical Chemistry and Laboratory Medicine, 2008, 46, 197-203.	2.3	3
77	Redox Chemistry of Ca-Transporter 2-Palmitoylhydroquinone in an Artificial Thin Organic Film Membrane. Journal of Physical Chemistry C, 2007, 111, 6068-6076.	3.1	29
78	Evaluation of the lipophilic properties of opioids, amphetamine-like drugs, and metabolites through electrochemical studies at the interface between two immiscible solutions. Analytical Biochemistry, 2007, 361, 236-243.	2.4	59
79	Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK 293 cells. Cell Calcium, 2006, 40, 1-10.	2.4	48
80	Theoretical study of a surface electrode reaction preceded by a homogeneous chemical reaction under conditions of square-wave voltammetry. Electrochemistry Communications, 2005, 7, 515-522.	4.7	35
81	Enzymatic formation of ions and their detection at a three-phase electrode. Journal of Solid State Electrochemistry, 2005, 9, 469-474.	2.5	3
82	Electrochemical Study of Ion Transfer of Acetylcholine Across the Interface of Water and a Lipid-Modified 1,2-Dichloroethane. Journal of Physical Chemistry B, 2005, 109, 12549-12559.	2.6	14