Wojciech Linhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336829/publications.pdf

Version: 2024-02-01

430874 345221 1,307 41 18 36 citations h-index g-index papers 41 41 41 1765 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electronic and optical properties of single crystal SnS ₂ : an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A, 2016, 4, 1312-1318.	10.3	246
2	Growth, disorder, and physical properties of ZnSnN2. Applied Physics Letters, 2013, 103, .	3.3	111
3	Band Gap Dependence on Cation Disorder in ZnSnN ₂ Solar Absorber. Advanced Energy Materials, 2015, 5, 1501462.	19.5	96
4	Growth and properties of GaSbBi alloys. Applied Physics Letters, 2013, 103, 142106.	3.3	84
5	High Bi content GaSbBi alloys. Journal of Applied Physics, 2014, 116, .	2.5	70
6	Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance. APL Materials, 2018, 6, 084901.	5.1	70
7	Direct Measurements of Fermi Level Pinning at the Surface of Intrinsically n-Type InGaAs Nanowires. Nano Letters, 2016, 16, 5135-5142.	9.1	60
8	Theoretical and experimental studies of electronic band structure for GaSb1â^'xBix in the dilute Bi regime. Journal Physics D: Applied Physics, 2014, 47, 355107.	2.8	50
9	Bi-induced band gap reduction in epitaxial InSbBi alloys. Applied Physics Letters, 2014, 105, .	3.3	48
10	Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature. Journal of Applied Physics, 2014, 115, .	2.5	47
11	Temperature dependence of the band gap of GaSb1â°'xBix alloys with 0 < x â‰â€‰0.042 photoreflectance. Applied Physics Letters, 2013, 103, .	deţeţmine	ed by
12	Novel Typeâ€II InAs/AlSb Core–Shell Nanowires and Their Enhanced Negative Photocurrent for Efficient Photodetection. Advanced Functional Materials, 2018, 28, 1705382.	14.9	36
13	Surface, bulk, and interface electronic properties of nonpolar InN. Applied Physics Letters, 2010, 97, .	3.3	30
14	Low- and high-energy photoluminescence from GaSb _{1â^} <i></i> Bi <i>_x</i> With 0 < <i>x</i> â% 0.042. Applied Physics Express, 2014, 7, 111202.	2.4	30
15	Optical properties of GaAsBi/GaAs quantum wells: Photoreflectance, photoluminescence and time-resolved photoluminescence study. Semiconductor Science and Technology, 2015, 30, 094005.	2.0	30
16	Bi flux-dependent MBE growth of GaSbBi alloys. Journal of Crystal Growth, 2015, 425, 241-244.	1.5	27
17	Optical absorption by dilute GaNSb alloys: Influence of N pair states. Applied Physics Letters, 2013, 103, 042110.	3.3	22
18	Giant Reduction of InN Surface Electron Accumulation: Compensation of Surface Donors by Mg Dopants. Physical Review Letters, 2012, 109, 247605.	7.8	20

#	Article	IF	CITATIONS
19	Photoacoustic spectroscopy of absorption edge for GaAsBi/GaAs nanowires grown on Si substrate. Applied Physics Letters, 2016, 109, 182106.	3.3	19
20	Multicolor emission from intermediate band semiconductor ZnO1â^xSex. Scientific Reports, 2017, 7, 44214.	3.3	19
21	Nesting-like band gap in bismuth sulfide Bi ₂ S ₃ . Journal of Materials Chemistry C, 2021, 9, 13733-13738.	5.5	18
22	Temperature dependence of band gaps in dilute bismides. Semiconductor Science and Technology, 2018, 33, 073001.	2.0	15
23	Band gap temperature-dependence and exciton-like state in copper antimony sulphide, CuSbS2. APL Materials, 2018, 6, .	5.1	14
24	Photoreflectance spectroscopy of GalnSbBi and AlGaSbBi quaternary alloys. Applied Physics Letters, 2014, 105, .	3.3	11
25	Sn 5s2 lone pairs and the electronic structure of tin sulphides: A photoreflectance, high-energy photoemission, and theoretical investigation. Physical Review Materials, 2020, 4, .	2.4	11
26	Characterization of bimetallic Au–Pt(111) surfaces. Thin Solid Films, 2010, 518, 3650-3657.	1.8	10
27	Band gap reduction in InN <i>x</i> Sb1- <i>x</i> alloys: Optical absorption, k \hat{A} · P modeling, and density functional theory. Applied Physics Letters, 2016, 109, .	3.3	9
28	Indium-incorporation enhancement of photoluminescence properties of Ga(In)SbBi alloys. Journal Physics D: Applied Physics, 2017, 50, 375102.	2.8	8
29	The influence of nitrogen and antimony on the optical quality of InNAs(Sb) alloys. Journal Physics D: Applied Physics, 2016, 49, 115105.	2.8	7
30	Mapping the composition-dependence of the energy bandgap of GaAsNBi alloys. Applied Physics Letters, 2019, 115, 082106.	3.3	7
31	Structural, electrical and optical characterization of MOCVD grown In-rich InGaN layers. Journal of Crystal Growth, 2012, 358, 51-56.	1.5	6
32	Temperature-dependent study of GaAs1 \hat{a} °x \hat{a} °y N x Bi y alloys for band-gap engineering: photoreflectance and k \hat{A} · p modeling. Applied Physics Express, 2020, 13, 091005.	2.4	6
33	MBE growth and characterization of Mn-doped InN. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	5
34	Effects of the host conduction band energy on the electronic band structure of ZnCdTeO dilute oxide alloys. Journal of Applied Physics, 2019, 126, 083106.	2.5	5
35	Surface electronic properties of In-rich InGaN alloys grown by MOCVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 662-665.	0.8	4
36	Sulfur passivation of surface electrons in highly Mg-doped InN. Journal of Applied Physics, 2013, 114, 103702.	2.5	3

#	Article	IF	CITATIONS
37	Photoreflectance and photoinduced microwave reflectance studies of surface band bending in Mg-doped InN. Journal of Applied Physics, 2019, 126, 045712.	2.5	3
38	Optical properties and dynamics of excitons in Ga(Sb, Bi)/GaSb quantum wells: evidence for a regular alloy behavior. Semiconductor Science and Technology, 2020, 35, 025024.	2.0	3
39	Epitaxial InGaN on nitridated Si(111) for photovoltaic applications. , 2012, , .		1
40	Nitrogen pair-induced temperature insensitivity of the band gap of GaNSb alloys. Journal Physics D: Applied Physics, 2019, 52, 045105.	2.8	0
41	Dilute Bismide Nanowires. , 2017, , 161-176.		0