
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Emissive Layers based on Organic/Inorganic Nanohybrids Using Aggregation Induced Emission Effect. Advanced Materials Technologies, 2022, 7, 2100876.	5.8	6
2	Synergistic Effect of Multiâ€Walled Carbon Nanotubes and Ladderâ€Type Conjugated Polymers on the Performance of Nâ€Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, 2106447.	14.9	14
3	An organic memory phototransistor based on oxygen-assisted persistent photoconductivity. Organic Electronics, 2022, 100, 106375.	2.6	7
4	Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas. Advanced Materials, 2022, 34, e2107172.	21.0	32
5	n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency. Nano Energy, 2022, 96, 107133.	16.0	28
6	Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nature Communications, 2022, 13, 2046.	12.8	41
7	Natural Product Betulinâ€Based Insulating Polymer Filler in Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
8	Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. Journal of Energy Chemistry, 2021, 55, 265-271.	12.9	50
9	Organic–inorganic doped nickel oxide nanocrystals for hole transport layers in inverted polymer solar cells with color tuning. Materials Chemistry Frontiers, 2021, 5, 418-429.	5.9	10
10	Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy, 2021, 79, 105505.	16.0	52
11	Understanding the Work Function Modification by a Selfâ€assembled Polyvinylpyrrolidone Layer in Inverted Organic Solar Cells. Solar Rrl, 2021, 5, 2000575.	5.8	8
12	Dynamic Redistribution of Mobile Ions in Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2007596.	14.9	23
13	Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency. Joule, 2021, 5, 467-480.	24.0	245
14	Nanocontacts give efficient hole injection in organic electronics. Science Bulletin, 2021, 66, 875-879.	9.0	2
15	Highly Soluble CsPbBr ₃ Perovskite Quantum Dots for Solution-Processed Light-Emission Devices. ACS Applied Nano Materials, 2021, 4, 1162-1174.	5.0	16
16	Accessing the Conduction Band Dispersion in CH ₃ NH ₃ PbI ₃ Single Crystals. Journal of Physical Chemistry Letters, 2021, 12, 3773-3778.	4.6	7
17	Impact of molecular layer on emergent photovoltaic response in silicon unraveled by photoelectron spectroscopy. Applied Surface Science, 2021, 544, 148807.	6.1	2
18	A high-conductivity n-type polymeric ink for printed electronics. Nature Communications, 2021, 12, 2354.	12.8	120

#	Article	IF	CITATIONS
19	Water Intake and Ion Exchange in PEDOT:Tos Films upon Cyclic Voltammetry: Experimental and Molecular Dynamics Investigation. Macromolecules, 2021, 54, 6552-6562.	4.8	15
20	Understanding Interface Dipoles at an Electron Transport Material/Electrode Modifier for Organic Electronics. ACS Applied Materials & amp; Interfaces, 2021, 13, 47218-47225.	8.0	5
21	Experimental and Theoretical Investigation into the Polaron Structure of K-Doped Polyfluorene Films. Journal of Physical Chemistry C, 2021, 125, 937-945.	3.1	4
22	Investigating the reason for high FF from ternary organic solar cells. Journal of Semiconductors, 2021, 42, 090501.	3.7	4
23	Defectâ€Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900529.	5.8	40
24	Image-force effects on energy level alignment at electron transport material/cathode interfaces. Journal of Materials Chemistry C, 2020, 8, 173-179.	5.5	11
25	Conductive polymer nanoantennas for dynamic organic plasmonics. Nature Nanotechnology, 2020, 15, 35-40.	31.5	70
26	0.7-GHz Solution-Processed Indium Oxide Rectifying Diodes. IEEE Transactions on Electron Devices, 2020, 67, 360-364.	3.0	8
27	Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency. Advanced Materials, 2020, 32, e2002344.	21.0	127
28	Microscopic Understanding of the Granular Structure and the Swelling of PEDOT:PSS. Macromolecules, 2020, 53, 6267-6278.	4.8	63
29	Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly(3,4â€Ethylenedioxythiophene). Advanced Energy and Sustainability Research, 2020, 1, 2000027.	5.8	14
30	Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films. Journal of Materials Chemistry A, 2020, 8, 18726-18734.	10.3	22
31	Temperature-dependent band structure evolution determined by surface geometry in organic halide perovskite single crystals. Physical Review B, 2020, 102, .	3.2	9
32	Defectâ€Passivation Using Organic Dyes for Enhanced Efficiency and Stability of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2070052.	5.8	1
33	Dimensional Tailoring of Ultrahigh Vacuum Annealing-Assisted Quantum Wells for the Efficiency Enhancement of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 24965-24970.	8.0	2
34	Energetics and Energy Loss in 2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000687.	19.5	68
35	Thermal-annealing effects on energy level alignment at organic heterojunctions and corresponding voltage losses in all-polymer solar cells. Nano Energy, 2020, 72, 104677.	16.0	16
36	Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nature Materials, 2020, 19, 738-744.	27.5	111

#	Article	IF	CITATIONS
37	Diluted Organic Semiconductors in Photovoltaics. Solar Rrl, 2020, 4, 2000261.	5.8	11
38	A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes. Journal of Materials Chemistry A, 2020, 8, 5467-5475.	10.3	79
39	Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nature Communications, 2020, 11, 891.	12.8	83
40	Recent progress in silver nanowire networks for flexible organic electronics. Journal of Materials Chemistry C, 2020, 8, 4636-4674.	5.5	122
41	Flexible Solidâ€State Asymmetric Supercapacitors with Enhanced Performance Enabled by Freeâ€Standing MXeneâ^'Biopolymer Nanocomposites and Hierarchical Grapheneâ^'RuO _{<i>x</i>} Paper Electrodes. Batteries and Supercaps, 2020, 3, 604-610.	4.7	19
42	Interfaces in organic electronics. Nature Reviews Materials, 2019, 4, 627-650.	48.7	237
43	Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 245-250.	27.8	1,103
44	Dirac Nodal Arc Semimetal PtSn ₄ : An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 13107-13112.	13.8	59
45	Dirac Nodal Arc Semimetal PtSn ₄ : An Ideal Platform for Understanding Surface Properties and Catalysis for Hydrogen Evolution. Angewandte Chemie, 2019, 131, 13241-13246.	2.0	28
46	Electronic and magnetic properties of a ferromagnetic cobalt surface by adsorbing ultrathin films of tetracyanoethylene. Physical Chemistry Chemical Physics, 2019, 21, 15833-15844.	2.8	4
47	New Antimony-Based Organic–Inorganic Hybrid Material as Electron Extraction Layer for Efficient and Stable Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 44820-44828.	8.0	6
48	Effects of water vapor and oxygen on non-fullerene small molecule acceptors. Journal of Materials Chemistry C, 2019, 7, 879-886.	5.5	27
49	Engineering of the Back Contact between PCBM and Metal Electrode for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Optical Materials, 2019, 7, 1900542.	7.3	24
50	Electronic Structure Characterization of Soft Semiconductors. Advanced Materials Interfaces, 2019, 6, 1900439.	3.7	3
51	Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells. Organic Electronics, 2019, 71, 65-71.	2.6	14
52	Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 254, 1-6.	20.2	69
53	Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 13491-13498.	8.0	71
54	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	31.4	970

#	Article	IF	CITATIONS
55	Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy, 2019, 60, 734-742.	16.0	124
56	Chitosan functionalization of titanium and Ti6Al4V alloy with chloroacetic acid as linker agent. Materials Science and Engineering C, 2019, 99, 1133-1140.	7.3	23
57	Electrochemical hydrogen production on a metal-free polymer. Sustainable Energy and Fuels, 2019, 3, 3387-3398.	4.9	24
58	MoS <i>_x</i> @NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807562.	14.9	83
59	12.5% Flexible Nonfullerene Solar Cells by Passivating the Chemical Interaction Between the Active Layer and Polymer Interfacial Layer. Advanced Materials, 2019, 31, e1806616.	21.0	151
60	Double doping of conjugated polymers with monomer molecular dopants. Nature Materials, 2019, 18, 149-155.	27.5	225
61	Interfaces of (Ultra)thin Polymer Films in Organic Electronics. Advanced Materials Interfaces, 2019, 6, 1800897.	3.7	37
62	Morphology Determines Conductivity and Seebeck Coefficient in Conjugated Polymer Blends. ACS Applied Materials & Interfaces, 2018, 10, 9638-9644.	8.0	26
63	Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 16225-16230.	8.0	66
64	Fabrication and Characterization of Hybrid Organic–Inorganic Electron Extraction Layers for Polymer Solar Cells toward Improved Processing Robustness and Air Stability. ACS Applied Materials & Interfaces, 2018, 10, 17309-17317.	8.0	11
65	The Effect of Oxygen Uptake on Charge Injection Barriers in Conjugated Polymer Films. ACS Applied Materials & Interfaces, 2018, 10, 6491-6497.	8.0	12
66	Understanding the Impact of Film Disorder and Local Surface Potential in Ultraviolet Photoelectron Spectroscopy of PEDOT. Macromolecular Rapid Communications, 2018, 39, 1700533.	3.9	22
67	Novel small-molecule zwitterionic electrolyte with ultralow work function as cathode modifier for inverted polymer solar cells. Organic Electronics, 2018, 59, 15-20.	2.6	14
68	Long Electron–Hole Diffusion Length in Highâ€Quality Leadâ€Free Double Perovskite Films. Advanced Materials, 2018, 30, e1706246.	21.0	242
69	Fast switching polymeric electrochromics with facile processed water dispersed nanoparticles. Nano Energy, 2018, 47, 123-129.	16.0	23
70	High Seebeck Coefficient in Mixtures of Conjugated Polymers. Advanced Functional Materials, 2018, 28, 1703280.	14.9	73
71	Energy level alignment at the interface of cadmium sulphide single crystal and phthalocyanines: The role of the crystal surface states. Materials Chemistry and Physics, 2018, 205, 102-112.	4.0	4
72	Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Organic Electronics, 2018, 52, 335-341.	2.6	73

#	Article	IF	CITATIONS
73	Bulk electronic transport impacts on electron transfer at conducting polymer electrode–electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11899-11904.	7.1	61
74	Comprehensive understanding of heat-induced degradation of triple-cation mixed halide perovskite for a robust solar cell. Nano Energy, 2018, 54, 218-226.	16.0	72
75	Photostability of Perovskite Solar Cells: Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment (Advanced Optical Materials 20/2018). Advanced Optical Materials, 2018, 6, 1870080.	7.3	3
76	11,11,12,12â€Tetracyanonaphthoâ€⊋,6â€quinodimethane in Contact with Ferromagnetic Electrodes for Organic Spintronics. Advanced Electronic Materials, 2018, 4, 1800077.	5.1	3
77	Carbonâ€Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media. Advanced Energy Materials, 2018, 8, 1801258.	19.5	111
78	Relationship of Ionization Potential and Oxidation Potential of Organic Semiconductor Films Used in Photovoltaics. Solar Rrl, 2018, 2, 1800122.	5.8	19
79	Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment. Advanced Optical Materials, 2018, 6, 1800262.	7.3	58
80	Efficient perovskite light-emitting diodes based on a solution-processed tin dioxide electron transport layer. Journal of Materials Chemistry C, 2018, 6, 6996-7002.	5.5	25
81	Effect of (3â€glycidyloxypropyl)trimethoxysilane (GOPS) on the electrical properties of PEDOT:PSS films. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 814-820.	2.1	190
82	Reduction of Charge-Carrier Recombination at ZnO–Polymer Blend Interfaces in PTB7-Based Bulk Heterojunction Solar Cells Using Regular Device Structure: Impact of ZnO Nanoparticle Size and Surfactant. ACS Applied Materials & Interfaces, 2017, 9, 17256-17264.	8.0	13
83	Ternary organic solar cells with enhanced open circuit voltage. Nano Energy, 2017, 37, 24-31.	16.0	96
84	Energy Level Alignment at Metal/Solutionâ€Processed Organic Semiconductor Interfaces. Advanced Materials, 2017, 29, 1606901.	21.0	37
85	Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant. ACS Applied Materials & Interfaces, 2017, 9, 35476-35482.	8.0	11
86	Intermixing Effect on Electronic Structures of TQ1:PC ₇₁ BM Bulk Heterojunction in Organic Photovoltaics. Solar Rrl, 2017, 1, 1700142.	5.8	7
87	Ternary Organic Solar Cells with Minimum Voltage Losses. Advanced Energy Materials, 2017, 7, 1700390.	19.5	55
88	Ground-state charge transfer for NIR absorption with donor/acceptor molecules: interactions mediated via energetics and orbital symmetries. Journal of Materials Chemistry C, 2017, 5, 275-281.	5.5	20
89	Single Crystalâ€Like Performance in Solutionâ€Coated Thinâ€Film Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 2379-2386.	14.9	87
90	High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6309-6314.	8.0	37

#	Article	IF	CITATIONS
91	Freestanding electrochromic paper. Journal of Materials Chemistry C, 2016, 4, 9680-9686.	5.5	53
92	Organic Semiconducting Materials. , 2016, , 11-45.		0
93	An Organic Mixed Ion–Electron Conductor for Power Electronics. Advanced Science, 2016, 3, 1500305.	11.2	188
94	Organic Photovoltaics: Low Band Gap Polymer Solar Cells With Minimal Voltage Losses (Adv. Energy) Tj ETQq0 (0 rgBT /C 19.5	overlock 10 Tf
95	Low Band Gap Polymer Solar Cells With Minimal Voltage Losses. Advanced Energy Materials, 2016, 6, 1600148.	19.5	84
96	Ligandâ€Free Synthesis of Aluminumâ€Doped Zinc Oxide Nanocrystals and their Use as Optical Spacers in Colorâ€Tuned Highly Efficient Organic Solar Cells. Advanced Functional Materials, 2016, 26, 243-253.	14.9	48
97	Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir–ShÃter Deposition. Advanced Functional Materials, 2016, 26, 1077-1084.	14.9	38
98	Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design Rules. Advanced Materials Interfaces, 2015, 2, 1500204.	3.7	34
99	Role of Thickâ€Lithium Fluoride Layer in Energy Level Alignment at Organic/Metal Interface: Unifying Effect on High Metallic Work Functions. Advanced Materials Interfaces, 2015, 2, 1400527.	3.7	21
100	Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages. Polymer Chemistry, 2015, 6, 4624-4633.	3.9	24
101	Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. Journal of Materials Chemistry C, 2015, 3, 10616-10623.	5.5	147
102	Self-assembled monolayer engineered interfaces: Energy level alignment tuning through chain length and end-group polarity. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 140-144.	1.7	9
103	Energetics at Doped Conjugated Polymer/Electrode Interfaces. Advanced Materials Interfaces, 2015, 2, 1400403.	3.7	28
104	Effects of side groups on the kinetics of charge carrier recombination in dye molecule-doped multilayer organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 46-50.	5.5	4
105	Effect of Gate Electrode Workâ€Function on Source Charge Injection in Electrolyteâ€Gated Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2014, 24, 695-700.	14.9	50
106	Hybrid Interface States and Spin Polarization at Ferromagnetic Metal–Organic Heterojunctions: Interface Engineering for Efficient Spin Injection in Organic Spintronics. Advanced Functional Materials, 2014, 24, 4812-4821.	14.9	50
107	Semi-metallic polymers. Nature Materials, 2014, 13, 190-194.	27.5	722
108	Boronâ€Doped Diamond Functionalization by an Electrografting/Alkyne–Azide Click Chemistry	3.4	21

Sequence. ChemElectroChem, 2014, 1, 1145-1154.

#	Article	IF	CITATIONS
109	Gramâ€Scale Synthesis of Ultrathin Tungsten Oxide Nanowires and their Aspect Ratioâ€Dependent Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 6029-6037.	14.9	100
110	Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 17676-17682.	10.3	48
111	Trapâ€Assisted Recombination via Integer Charge Transfer States in Organic Bulk Heterojunction Photovoltaics. Advanced Functional Materials, 2014, 24, 6309-6316.	14.9	70
112	Poly(ethylene imine) Impurities Induce nâ€doping Reaction in Organic (Semi)Conductors. Advanced Materials, 2014, 26, 6000-6006.	21.0	101
113	Interplay of Optical, Morphological, and Electronic Effects of ZnO Optical Spacers in Highly Efficient Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400805.	19.5	78
114	Oxygen―and Waterâ€Based Degradation in [6,6]â€Phenyl ₆₁ â€Butyric Acid Methyl Ester (PCB Films. Advanced Energy Materials, 2014, 4, 1301272.	M) 19.5	92
115	All-printed diode operating at 1.6 GHz. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11943-11948.	7.1	68
116	Energy level alignment and interactive spin polarization at organic/ferromagnetic metal interfaces for organic spintronics. Organic Electronics, 2014, 15, 1951-1957.	2.6	11
117	Photoelectron spectroscopy and modeling of interface properties related to organic photovoltaic cells. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 33-41.	1.7	26
118	Energy level alignment in Au/pentacene/PTCDA trilayer stacks. Chemical Physics Letters, 2013, 583, 38-41.	2.6	13
119	Amphiphilic semiconducting copolymer as compatibility layer for printing polyelectrolyte-gated OFETs. Organic Electronics, 2013, 14, 790-796.	2.6	11
120	Role of intrinsic molecular dipole in energy level alignment at organic interfaces. Applied Physics Letters, 2013, 102, 223301.	3.3	28
121	Modeling charge transfer at organic donor-acceptor semiconductor interfaces. Applied Physics Letters, 2012, 100, 203302.	3.3	27
122	Charge equilibration and potential steps in organic semiconductor multilayers. Organic Electronics, 2012, 13, 1793-1801.	2.6	21
123	The study of organic semiconductor/ferromagnet interfaces in organic spintronics: A short review of recent progress. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1453-1462.	2.1	24
124	Modified Surface Electronic and Magnetic Properties of La _{0.6} Sr _{0.4} MnO ₃ Thin Films for Spintronics Applications. Journal of Physical Chemistry C, 2011, 115, 16947-16953.	3.1	36
125	Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment. Journal of Materials Chemistry, 2011, 21, 1721-1729.	6.7	145
126	Electronic structure of thin film cobalt tetracyanoethylene, Co(TCNE)x. Synthetic Metals, 2011, 161, 1892-1897.	3.9	9

#	Article	IF	CITATIONS
127	Optimization of the thermoelectric figure ofÂmeritÂin the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 2011, 10, 429-433.	27.5	1,518
128	Local Surface Potential of π onjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth. Small, 2011, 7, 634-639.	10.0	20
129	Spontaneous Charge Transfer and Dipole Formation at the Interface Between P3HT and PCBM. Advanced Energy Materials, 2011, 1, 792-797.	19.5	62
130	Nitrile‣ubstituted QA Derivatives: New Acceptor Materials for Solutionâ€Processable Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2011, 1, 431-439.	19.5	135
131	Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation. Angewandte Chemie - International Edition, 2011, 50, 12529-12533.	13.8	56
132	â€~In-situ' Solution Processed Room Temperature Ferromagnetic MgO Thin Films Printed by Inkjet Technique. Materials Research Society Symposia Proceedings, 2011, 1292, 105.	0.1	5
133	Energy-Level Alignment at Metal–Organic and Organic–Organic Interfaces in Bulk-Heterojunction Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1718-1724.	2.9	28
134	Efficient Spin Injection Through Exchange Coupling at Organic Semiconductor/Ferromagnet Heterojunctions. Advanced Materials, 2010, 22, 1626-1630.	21.0	74
135	Electronic structure and molecular orientation of pentacene thin films on ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>La</mml:mtext></mml:mrow><mml:mrow Physical Review B. 2010. 81</mml:mrow </mml:mrow></mml:mrow></mml:math 	> < <mark>3;2</mark> ml:mr	1>0.7
136	Experimental evidence for ferromagnetism at room temperature in MgO thin films. Journal of Physics Condensed Matter, 2010, 22, 345004.	1.8	40
137	Energy‣evel Alignment at Organic/Metal and Organic/Organic Interfaces. Advanced Materials, 2009, 21, 1450-1472.	21.0	1,400
138	Electronic structure of thin film iron-tetracyanoethylene: Fe(TCNE)x. Applied Physics A: Materials Science and Processing, 2009, 95, 131-138.	2.3	16
139	Degradation of microporous polyaniline film by UV–ozone treatment. Polymer Degradation and Stability, 2009, 94, 350-354.	5.8	5
140	Ferromagnetism above room temperature in nickel–tetracyanoethylene thin films. Journal of Materials Chemistry, 2009, 19, 6610.	6.7	17
141	Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity. Chemistry of Materials, 2009, 21, 1815-1821.	6.7	96
142	Tuning Work Function of Noble Metals As Promising Cathodes in Organic Electronic Devices. Chemistry of Materials, 2009, 21, 2798-2802.	6.7	21
143	Tuning the Energy Levels of Photochromic Diarylethene Compounds for Opto-Electronic Switch Devices. Journal of Physical Chemistry C, 2009, 113, 18396-18405.	3.1	44
144	Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2009, 21, 5327-5334.	6.7	137

#	Article	IF	CITATIONS
145	The unoccupied electronic structure of the semi-conducting room temperature molecular magnet V(TCNE)2. Chemical Physics Letters, 2008, 452, 173-177.	2.6	13
146	Comparative XPS surface study of polyaniline thin films. Solid State Ionics, 2008, 179, 2234-2239.	2.7	329
147	Control of Neural Stem Cell Adhesion and Density by an Electronic Polymer Surface Switch. Langmuir, 2008, 24, 14133-14138.	3.5	86
148	Air-stable organic-based semiconducting room temperature thin film magnet for spintronics applications. Applied Physics Letters, 2008, 92, .	3.3	22
149	Dye sensitized solar cells with a plastic counter electrode of poly(3,4-ethylene) Tj ETQq1 1 0.784314 rgBT /Overl	ock 10 Tf !	50 <mark>5</mark> 82 Td (di
150	Fermi-level pinning at conjugated polymer interfaces. Applied Physics Letters, 2006, 88, 053502.	3.3	303
151	Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces. Applied Physics Letters, 2006, 89, 213503.	3.3	77
152	Ultraviolet light–ozone treatment of poly(3,4-ethylenedioxy-thiophene)-based materials resulting in increased work functions. Thin Solid Films, 2006, 515, 2085-2090.	1.8	37
153	1 micron wavelength photo- and electroluminescence from a conjugated polymer. Applied Physics Letters, 2004, 84, 3570-3572.	3.3	84
154	Electronic Delocalization in Discotic Liquid Crystals:Â A Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 2004, 126, 11889-11899.	13.7	136
155	Synthesis, structure determination and X-ray photoelectron spectroscopy characterisation of a novel polymeric silver(I) nicotinic acid complex, H[Ag(py-3-CO2)2]. Polyhedron, 2001, 20, 2747-2753.	2.2	30
156	Photoelectron Spectroscopy of Interfaces for Polymer-Based Electronic Devices. , 2001, , .		1
157	XPS Study of Highly Sulfonated Polyaniline. Macromolecules, 1999, 32, 3114-3117.	4.8	191
158	The interaction of poly (p-phenylenevinylene) with air. Advanced Materials, 1996, 8, 971-974.	21.0	41
159	Efficient blue-light emitting devices from conjugated polymer blends. Advanced Materials, 1996, 8, 982-985.	21.0	34
160	Characterization of Palladium Acetylacetonate as a CVD Precursor for Pd Metallization. Materials Research Society Symposia Proceedings, 1992, 282, 353.	0.1	0