Thomas Stamminger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nuclear Domain 10 (ND10) Is Disrupted by the Human Cytomegalovirus Gene Product IE1. Experimental Cell Research, 1996, 229, 155-158.	2.6	205
2	Evidence for a Role of the Cellular ND10 Protein PML in Mediating Intrinsic Immunity against Human Cytomegalovirus Infections. Journal of Virology, 2006, 80, 8006-8018.	3.4	194
3	Cellular p32 Recruits Cytomegalovirus Kinase pUL97 to Redistribute the Nuclear Lamina. Journal of Biological Chemistry, 2005, 280, 33357-33367.	3.4	158
4	New insights into the role of the subnuclear structure ND10 for viral infection. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2207-2221.	4.1	158
5	Functional Interaction between the pp71 Protein of Human Cytomegalovirus and the PML-Interacting Protein Human Daxx. Journal of Virology, 2002, 76, 5769-5783.	3.4	153
6	Covalent Modification of the Transactivator Protein IE2-p86 of Human Cytomegalovirus by Conjugation to the Ubiquitin-Homologous Proteins SUMO-1 and hSMT3b. Journal of Virology, 2000, 74, 2510-2524.	3.4	151
7	Recombinant Green Fluorescent Protein-Expressing Human Cytomegalovirus as a Tool for Screening Antiviral Agents. Antimicrobial Agents and Chemotherapy, 2000, 44, 1588-1597.	3.2	130
8	Prevalence of SARS-CoV-2 Infection in Children and Their Parents in Southwest Germany. JAMA Pediatrics, 2021, 175, 586.	6.2	124
9	The UL69 Transactivator Protein of Human Cytomegalovirus Interacts with DEXD/H-Box RNA Helicase UAP56 To Promote Cytoplasmic Accumulation of Unspliced RNA. Molecular and Cellular Biology, 2006, 26, 1631-1643.	2.3	96
10	Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses, 2009, 1, 1240-1264.	3.3	83
11	E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection. PLoS Pathogens, 2016, 12, e1005415.	4.7	64
12	Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1. Viruses, 2015, 7, 2884-2907.	3.3	63
13	A Nonconventional Nuclear Localization Signal within the UL84 Protein of Human Cytomegalovirus Mediates Nuclear Import via the Importin α/β Pathway. Journal of Virology, 2003, 77, 3734-3748.	3.4	61
14	Deletion of Open Reading Frame UL26 from the Human Cytomegalovirus Genome Results in Reduced Viral Growth, Which Involves Impaired Stability of Viral Particles. Journal of Virology, 2006, 80, 5423-5434.	3.4	61
15	Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Research, 2011, 157, 128-133.	2.2	61
16	Crystal Structure of Cytomegalovirus IE1 Protein Reveals Targeting of TRIM Family Member PML via Coiled-Coil Interactions. PLoS Pathogens, 2014, 10, e1004512.	4.7	60
17	Kaposi's Sarcoma Associated Herpesvirus Tegument Protein ORF75 Is Essential for Viral Lytic Replication and Plays a Critical Role in the Antagonization of ND10-Instituted Intrinsic Immunity. PLoS Pathogens, 2014, 10, e1003863.	4.7	57
18	Consecutive Inhibition of ISG15 Expression and ISGylation by Cytomegalovirus Regulators. PLoS Pathogens, 2016, 12, e1005850.	4.7	56

THOMAS STAMMINGER

#	Article	IF	CITATIONS
19	The human cytomegalovirus regulatory protein UL69 and its effect on mRNA export. Frontiers in Bioscience - Landmark, 2008, 13, 2939.	3.0	55
20	Human cytomegalovirus immediate-early gene expression is restricted by the nuclear domain 10 component Sp100. Journal of General Virology, 2011, 92, 1532-1538.	2.9	55
21	PML promotes MHC class II gene expression by stabilizing the class II transactivator. Journal of Cell Biology, 2012, 199, 49-63.	5.2	54
22	Robust and durable serological response following pediatric SARS-CoV-2 infection. Nature Communications, 2022, 13, 128.	12.8	54
23	Independent Side-by-Side Validation and Comparison of 4 Serological Platforms for SARS-CoV-2 Antibody Testing. Journal of Infectious Diseases, 2021, 223, 796-801.	4.0	51
24	Cyclin-dependent Kinases Phosphorylate the Cytomegalovirus RNA Export Protein pUL69 and Modulate Its Nuclear Localization and Activity. Journal of Biological Chemistry, 2009, 284, 8605-8613.	3.4	49
25	The broad-spectrum antiinfective drug artesunate interferes with theÂcanonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65. Antiviral Research, 2015, 124, 101-109.	4.1	48
26	Cytomegaloviral protein kinase pUL97 interacts with the nuclear mRNA export factor pUL69 to modulate its intranuclear localization and activity. Journal of General Virology, 2009, 90, 567-578.	2.9	46
27	The Human Cytomegalovirus IE1 Protein Antagonizes PML Nuclear Body-Mediated Intrinsic Immunity via the Inhibition of PML <i>De Novo</i> SUMOylation. Journal of Virology, 2017, 91, .	3.4	46
28	RNA-binding of the human cytomegalovirus transactivator protein UL69, mediated by arginine-rich motifs, is not required for nuclear export of unspliced RNA. Nucleic Acids Research, 2006, 34, 1237-1249.	14.5	43
29	Characterization of Recombinant Human Cytomegaloviruses Encoding IE1 Mutants L174P and 1-382 Reveals that Viral Targeting of PML Bodies Perturbs both Intrinsic and Innate Immune Responses. Journal of Virology, 2016, 90, 1190-1205.	3.4	42
30	Mapping of a self-interaction domain of the cytomegalovirus protein kinase pUL97. Journal of General Virology, 2007, 88, 395-404.	2.9	40
31	Molecular targets for antiviral therapy of cytomegalovirus infections. Future Microbiology, 2009, 4, 731-742.	2.0	40
32	Profiling of the kinome of cytomegalovirus-infected cells reveals the functional importance of host kinases Aurora A, ABL and AMPK. Antiviral Research, 2013, 99, 139-148.	4.1	40
33	Recruitment of Human Cytomegalovirus Immediate-Early 2 Protein onto Parental Viral Genomes in Association with ND10 in Live-Infected Cells. Journal of Virology, 2007, 81, 10123-10136.	3.4	37
34	Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nature Microbiology, 2019, 4, 164-176.	13.3	37
35	Functional Reorganization of Promyelocytic Leukemia Nuclear Bodies during BK Virus Infection. MBio, 2011, 2, e00281-10.	4.1	36
36	Importance of Covalent and Noncovalent SUMO Interactions with the Major Human Cytomegalovirus Transactivator IE2p86 for Viral Infection. Journal of Virology, 2009, 83, 12881-12894.	3.4	34

#	Article	IF	CITATIONS
37	An enzyme-based immunodetection assay to quantify SARS-CoV-2 infection. Antiviral Research, 2020, 181, 104882.	4.1	34
38	A Virally Encoded DeSUMOylase Activity Is Required for Cytomegalovirus Reactivation from Latency. Cell Reports, 2018, 24, 594-606.	6.4	33
39	Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1. Journal of General Virology, 2011, 92, 1519-1531.	2.9	30
40	Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation. PLoS ONE, 2016, 11, e0160176.	2.5	29
41	Inhibitors of dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) exert a strong anti-herpesviral activity. Antiviral Research, 2017, 143, 113-121.	4.1	26
42	Artesunate-derived monomeric, dimeric and trimeric experimental drugs – Their unique mechanistic basis and pronounced antiherpesviral activity. Antiviral Research, 2018, 152, 104-110.	4.1	26
43	TRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner. Viruses, 2016, 8, 2.	3.3	24
44	Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nature Microbiology, 2020, 5, 1247-1261.	13.3	22
45	The Human CMV IE1 Protein: An Offender of PML Nuclear Bodies. Advances in Anatomy, Embryology and Cell Biology, 2017, 223, 77-94.	1.6	21
46	Small ubiquitin-related modifier (SUMO) pathway-mediated enhancement of human cytomegalovirus replication correlates with a recruitment of SUMO-1/3 proteins to viral replication compartments. Journal of General Virology, 2013, 94, 1373-1384.	2.9	20
47	Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins. Viruses, 2016, 8, 219.	3.3	19
48	The Major Immediate-Early Protein IE2 of Human Cytomegalovirus Is Sufficient to Induce Proteasomal Degradation of CD83 on Mature Dendritic Cells. Frontiers in Microbiology, 2017, 8, 119.	3.5	18
49	Insertion of an EYFP-pp71 (UL82) Coding Sequence into the Human Cytomegalovirus Genome Results in a Recombinant Virus with Enhanced Viral Growth. Journal of Virology, 2008, 82, 10543-10555.	3.4	17
50	The ND10 Component Promyelocytic Leukemia Protein Acts as an E3 Ligase for SUMOylation of the Major Immediate Early Protein IE1 of Human Cytomegalovirus. Journal of Virology, 2017, 91, .	3.4	17
51	New insight into the phosphorylation-regulated intranuclear localization of human cytomegalovirus pUL69 mediated by cyclin-dependent kinases (CDKs) and viral CDK orthologue pUL97. Journal of General Virology, 2016, 97, 144-151.	2.9	17
52	The Thrombopoietin Receptor Agonist Eltrombopag Inhibits Human Cytomegalovirus Replication Via Iron Chelation. Cells, 2020, 9, 31.	4.1	16
53	Emerging roles of cytomegalovirus-encoded G protein-coupled receptors during lytic and latent infection. Medical Microbiology and Immunology, 2019, 208, 447-456.	4.8	15
54	A quantitative nuclear egress assay to investigate the nucleocytoplasmic capsid release of human cytomegalovirus. Journal of Virological Methods, 2020, 283, 113909.	2.1	15

#	Article	IF	CITATIONS
55	Chromatin-Remodeling Factor SPOC1 Acts as a Cellular Restriction Factor against Human Cytomegalovirus by Repressing the Major Immediate Early Promoter. Journal of Virology, 2018, 92, .	3.4	14
56	Characterization of the Betaherpesviral pUL69 Protein Family Reveals Binding of the Cellular mRNA Export Factor UAP56 as a Prerequisite for Stimulation of Nuclear mRNA Export and for Efficient Viral Replication. Journal of Virology, 2011, 85, 1804-1819.	3.4	13
57	Human cytomegalovirus-induced host protein citrullination is crucial for viral replication. Nature Communications, 2021, 12, 3910.	12.8	13
58	Intrinsic Immune Mechanisms Restricting Human Cytomegalovirus Replication. Viruses, 2021, 13, 179.	3.3	12
59	Phenotypical Characterization of the Nuclear Egress of Recombinant Cytomegaloviruses Reveals Defective Replication upon ORF-UL50 Deletion but Not pUL50 Phosphosite Mutation. Viruses, 2021, 13, 165.	3.3	12
60	SUMOylation of IE2p86 is required for efficient autorepression of the human cytomegalovirus major immediate-early promoter. Journal of General Virology, 2018, 99, 369-378.	2.9	12
61	Intracellular Trafficking of the Human Cytomegalovirus-Encoded 7-trans-Membrane Protein Homologs pUS27 and pUL78 during Viral Infection: A Comparative Analysis. Viruses, 2014, 6, 661-682.	3.3	11
62	Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression. Viruses, 2015, 7, 2428-2449.	3.3	11
63	Controlled crystal dehydration triggers a space-group switch and shapes the tertiary structure of cytomegalovirus immediate-early 1 (IE1) protein. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1493-1504.	2.5	11
64	A Noncanonical Function of Polycomb Repressive Complexes Promotes Human Cytomegalovirus Lytic DNA Replication and Serves as a Novel Cellular Target for Antiviral Intervention. Journal of Virology, 2019, 93, .	3.4	11
65	Wedelolactone inhibits human cytomegalovirus replication by targeting distinct steps of the viral replication cycle. Antiviral Research, 2020, 174, 104677.	4.1	11
66	pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine Methyltransferase 6 via a Domain That Is Crucial for mRNA Export and Efficient Viral Replication. Journal of Virology, 2015, 89, 9601-9615.	3.4	10
67	Attenuation of chemokine receptor function and surface expression as an immunomodulatory strategy employed by human cytomegalovirus is linked to vGPCR US28. Cell Communication and Signaling, 2016, 14, 31.	6.5	10
68	The Autophagy-Initiating Protein Kinase ULK1 Phosphorylates Human Cytomegalovirus Tegument Protein pp28 and Regulates Efficient Virus Release. Journal of Virology, 2021, 95, .	3.4	10
69	The human cytomegalovirus IE1 protein: past and present developments. Future Virology, 2014, 9, 415-430.	1.8	9
70	Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner. PLoS Pathogens, 2020, 16, e1008426.	4.7	9
71	Functional regulation of the structure-specific endonuclease FEN1 by the human cytomegalovirus protein IE1 suggests a role for the re-initiation of stalled viral replication forks. PLoS Pathogens, 2021, 17, e1009460.	4.7	9
72	In Utero Administration of Drugs Targeting Microglia Improves the Neurodevelopmental Outcome Following Cytomegalovirus Infection of the Rat Fetal Brain. Frontiers in Cellular Neuroscience, 2018, 12, 55.	3.7	8

#	Article	IF	CITATIONS
73	Phosphosite Analysis of the Cytomegaloviral mRNA Export Factor pUL69 Reveals Serines with Critical Importance for Recruitment of Cellular Proteins Pin1 and UAP56/URH49. Journal of Virology, 2020, 94, .	3.4	7
74	Cytomegalovirus chemokine receptor M33 knockout reduces chronic allograft rejection in a murine aortic transplant model. Transplant Immunology, 2021, 64, 101359.	1.2	7
75	Dual signaling via interferon and DNA damage response elicits entrapment by giant PML nuclear bodies. ELife, 2022, 11, .	6.0	7
76	Identification of UL69 Gene and Protein in Cytomegalovirus-Transformed Human Mammary Epithelial Cells. Frontiers in Oncology, 2021, 11, 627866.	2.8	6
77	Differential upregulation of host cell protein kinases by the replication of α-, β- and γ-herpesviruses provides a signature of virus-specific signalling. Journal of General Virology, 2020, 101, 284-289.	2.9	6
78	Transfer of the UAP56 Interaction Motif of Human Cytomegalovirus pUL69 to Its Murine Cytomegalovirus Homolog Converts the Protein into a Functional mRNA Export Factor That Can Substitute for pUL69 during Viral Infection. Journal of Virology, 2012, 86, 7448-7453.	3.4	5
79	Role of CMV chemokine receptor M33 in airway graft rejection in a mouse transplant model. Transplant Immunology, 2021, 67, 101415.	1.2	4
80	Cytomegalovirus immediate-early 1 proteins form a structurally distinct protein class with adaptations determining cross-species barriers. PLoS Pathogens, 2021, 17, e1009863.	4.7	4
81	Methods to Study the Nucleocytoplasmic Transport of Macromolecules with Respect to Their Impact on the Regulation of Human Cytomegalovirus Gene Expression. Methods in Molecular Biology, 2014, 1119, 197-216.	0.9	4
82	Human Cytomegalovirus Particles Treated with Specific Antibodies Induce Intrinsic and Adaptive but Not Innate Immune Responses. Journal of Virology, 2017, 91, .	3.4	3
83	Stable and Inducible Gene Knockdown in Primary Human Fibroblasts: A Versatile Tool to Study the Role of Human Cytomegalovirus Host Cell Factors. Methods in Molecular Biology, 2021, 2244, 115-132.	0.9	1
84	Inhibitors of Activin Receptor-like Kinase 5 Interfere with SARS-CoV-2 S-Protein Processing and Spike-Mediated Cell Fusion via Attenuation of Furin Expression. Viruses, 2022, 14, 1308.	3.3	1