Patrick T Ronaldson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2335792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blood–Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. International Journal of Molecular Sciences, 2022, 23, 1898.	4.1	26
2	High-Dose Acetaminophen Alters the Integrity of the Blood–Brain Barrier and Leads to Increased CNS Uptake of Codeine in Rats. Pharmaceutics, 2022, 14, 949.	4.5	2
3	Regulation of Blood-Brain Barrier Transporters by Transforming Growth Factor- <i>β</i> /Activin Receptor-Like Kinase 1 Signaling: Relevance to the Brain Disposition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors (i.e., Statins). Drug Metabolism and Disposition, 2022, 50, 942-956.	3.3	7
4	Transport Properties of Statins by Organic Anion Transporting Polypeptide 1A2 and Regulation by Transforming Growth Factor- <i>l²</i> Signaling in Human Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 148-160.	2.5	18
5	Organic Cation Transporter (OCT/OCTN) Expression at Brain Barrier Sites: Focus on CNS Drug Delivery. Handbook of Experimental Pharmacology, 2021, 266, 301-328.	1.8	14
6	Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Frontiers in Physiology, 2020, 11, 914.	2.8	184
7	Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S6-S24.	4.3	196
8	Transporter-Mediated Delivery of Small Molecule Drugs to the Brain: A Critical Mechanism That Can Advance Therapeutic Development for Ischemic Stroke. Pharmaceutics, 2020, 12, 154.	4.5	27
9	Distribution of insulin in trigeminal nerve and brain after intranasal administration. Scientific Reports, 2019, 9, 2621.	3.3	72
10	Functional Expression of Organic Anion Transporting Polypeptide 1a4 Is Regulated by Transforming Growth Factor- <i>β</i> /Activin Receptor-like Kinase 1 Signaling at the Blood-Brain Barrier. Molecular Pharmacology, 2018, 94, 1321-1333.	2.3	21
11	Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics, 2018, 10, 192.	4.5	21
12	Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood–brain barrier in Sprague–Dawley rats. Fluids and Barriers of the CNS, 2018, 15, 25.	5.0	27
13	Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. American Journal of Physiology - Cell Physiology, 2018, 315, C343-C356.	4.6	351
14	A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels. Journal of Visualized Experiments, 2018, , .	0.3	9
15	Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood–brain barrier via the activin receptor-like kinase-1 receptor. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2340-2345.	4.3	18
16	Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?. AAPS Journal, 2017, 19, 931-939.	4.4	61
17	Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood–brain barrier following hypoxia-reoxygenation stress. Fluids and Barriers of the CNS, 2017, 14, 6.	5.0	24
18	Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS Journal, 2017, 19, 910-920.	4.4	56

PATRICK T RONALDSON

#	Article	IF	CITATIONS
19	Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. Journal of Central Nervous System Disease, 2017, 9, 117957351769380.	1.9	53
20	Glial Support of Blood–Brain Barrier Integrity: Molecular Targets for Novel Therapeutic Strategies in Stroke. Springer Series in Translational Stroke Research, 2016, , 45-80.	0.1	0
21	Targeting transporters: Promoting blood–brain barrier repair in response to oxidative stress injury. Brain Research, 2015, 1623, 39-52.	2.2	57
22	Editorial (Thematic Issue: Targeting Transporters for CNS Drug Delivery). Current Pharmaceutical Design, 2014, 20, 1419-1421.	1.9	3
23	P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac. PLoS ONE, 2014, 9, e88516.	2.5	38
24	Hypoxia/Reoxygenation Stress Signals an Increase in Organic Anion Transporting polypeptide 1a4 (Oatp1a4) at the Blood–Brain Barrier: Relevance to CNS Drug Delivery. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 699-707.	4.3	64
25	Drug Delivery to the Ischemic Brain. Advances in Pharmacology, 2014, 71, 165-202.	2.0	92
26	Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery?. Current Pharmaceutical Design, 2014, 20, 1422-1449.	1.9	201
27	Targeted Drug Delivery to Treat Pain and Cerebral Hypoxia. Pharmacological Reviews, 2013, 65, 291-314.	16.0	70
28	Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor–Dependent Mechanism. Molecular Pharmacology, 2013, 84, 774-786.	2.3	49
29	Gabapentin and Diclofenac Reduce Opioid Consumption in Patients Undergoing Tonsillectomy: A Result of Altered CNS Drug Delivery?. Archives of Trauma Research, 2013, 2, 97-8.	0.9	5
30	Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H582-H593.	3.2	44
31	Blood-Brain Barrier Integrity and Glial Support: Mechanisms that can be Targeted for Novel Therapeutic Approaches in Stroke. Current Pharmaceutical Design, 2012, 18, 3624-3644.	1.9	142
32	Pâ€glycoprotein trafficking at the blood–brain barrier altered by peripheral inflammatory hyperalgesia. Journal of Neurochemistry, 2012, 122, 962-975.	3.9	66
33	Regulation of Pâ€glycoprotein by human immunodeficiency virusâ€1 in primary cultures of human fetal astrocytes. Journal of Neuroscience Research, 2011, 89, 1773-1782.	2.9	35
34	Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Therapeutic Delivery, 2011, 2, 1015-1041.	2.2	52
35	Inflammatory Pain Signals an Increase in Functional Expression of Organic Anion Transporting Polypeptide 1a4 at the Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 827-839.	2.5	72
36	Regulation of Multidrug Resistance Protein 1 by Tumor Necrosis Factor α in Cultured Glial Cells: Involvement of Nuclear Factor-κB and c-Jun N-Terminal Kinase Signaling Pathways. Molecular Pharmacology, 2010, 77, 644-659.	2.3	65

PATRICK T RONALDSON

#	Article	IF	CITATIONS
37	Upâ€regulation of Pâ€glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line. Journal of Neuroscience Research, 2009, 87, 1023-1036.	2.9	103
38	Transforming Growth Factor-Î ² Signaling Alters Substrate Permeability and Tight Junction Protein Expression at the Blood-Brain Barrier during Inflammatory Pain. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1084-1098.	4.3	135
39	Regulation of ABC membrane transporters in glial cells: Relevance to the pharmacotherapy of brain HIVâ€1 infection. Clia, 2008, 56, 1711-1735.	4.9	85
40	HIVâ€1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance proteinâ€1 (Mrp1) in glial cells. Journal of Neurochemistry, 2008, 106, 1298-1313.	3.9	99
41	In Situ Localization of P-glycoprotein (ABCB1) in Human and Rat Brain. Journal of Histochemistry and Cytochemistry, 2006, 54, 1159-1167.	2.5	199
42	HIV-1 Viral Envelope Clycoprotein gp120 Triggers an Inflammatory Response in Cultured Rat Astrocytes and Regulates the Functional Expression of P-Glycoprotein. Molecular Pharmacology, 2006, 70, 1087-1098.	2.3	130
43	Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. Journal of Neurochemistry, 2004, 89, 788-800.	3.9	97
44	Involvement of P-Glycoprotein in the Transport of Saquinavir and Indinavir in Rat Brain Microvessel Endothelial and Microglia Cell Lines. Pharmaceutical Research, 2004, 21, 811-818.	3.5	43
45	Multidrug resistance protein 1-mediated transport of saquinavir by microglia. NeuroReport, 2004, 15, 1183-1186.	1.2	35