Yun-Pei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2335763/publications.pdf

Version: 2024-02-01

47 papers 5,157 citations

32 h-index 243625 44 g-index

52 all docs 52 docs citations

52 times ranked 7920 citing authors

#	Article	IF	CITATIONS
1	Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts of Chemical Research, 2017, 50, 915-923.	15.6	824
2	Selfâ€Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. Advanced Functional Materials, 2015, 25, 7337-7347.	14.9	688
3	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017, 56, 1324-1328.	13.8	648
4	Mesoporous Phosphorus-Doped g-C ₃ N ₄ Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16850-16856.	8.0	635
5	Carbon-Doped ZnO Hybridized Homogeneously with Graphitic Carbon Nitride Nanocomposites for Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 10963-10971.	3.1	259
6	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 3222-3227.	13.8	157
7	Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorganic Chemistry Frontiers, 2014, 1, 360-383.	6.0	134
8	3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602928.	19.5	120
9	Metalâ€Free Carbonaceous Materials as Promising Heterogeneous Catalysts. ChemCatChem, 2015, 7, 2765-2787.	3.7	118
10	Highly Stable Phosphonateâ€Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production. Advanced Materials, 2020, 32, e1906368.	21.0	117
11	Singleâ€Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes. Angewandte Chemie - International Edition, 2019, 58, 14599-14604.	13.8	111
12	Sonochemistry-assisted synthesis and optical properties of mesoporous ZnS nanomaterials. Journal of Materials Chemistry A, 2014, 2, 1093-1101.	10.3	81
13	Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11725-11729.	10.3	79
14	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie, 2017, 129, 1344-1348.	2.0	79
15	Ultrafine Metal Phosphide Nanocrystals <i>in Situ</i> Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28369-28376.	8.0	72
16	CuO catalysts supported on activated red mud for efficient catalytic carbon monoxide oxidation. Chemical Engineering Journal, 2016, 302, 23-32.	12.7	70
17	Insights into mesoporous metal phosphonate hybrid materials for catalysis. Catalysis Science and Technology, 2015, 5, 4258-4279.	4.1	68
18	Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst. Nanoscale, 2014, 6, 11395-11402.	5.6	66

#	Article	IF	Citations
19	Direct Synthesis of Phosphorusâ€Doped Mesoporous Carbon Materials for Efficient Electrocatalytic Oxygen Reduction. ChemCatChem, 2015, 7, 2903-2909.	3.7	65
20	Hollow manganese phosphonate microspheres with hierarchical porosity for efficient adsorption and separation. Nanoscale, 2014, 6, 6627-6636.	5.6	63
21	Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis. Chemical Communications, 2016, 52, 2118-2121.	4.1	58
22	Mesoporous non-siliceous inorganic–organic hybrids: a promising platform for designing multifunctional materials. New Journal of Chemistry, 2014, 38, 1905-1922.	2.8	48
23	Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems. Catalysts, 2017, 7, 373.	3.5	48
24	Nanoporous Metal Phosphonate Hybrid Materials as a Novel Platform for Emerging Applications: A Critical Review. Small, 2021, 17, e2005304.	10.0	48
25	Mesoporous Cerium Phosphonate Nanostructured Hybrid Spheres as Label-Free Hg ²⁺ Fluorescent Probes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16344-16351.	8.0	47
26	Nitrogen and sulfur co-doped mesoporous hollow carbon microspheres for highly efficient oxygen reduction electrocatalysts. International Journal of Hydrogen Energy, 2017, 42, 19010-19018.	7.1	45
27	Threeâ€Dimensional Electrocatalysts for Sustainable Water Splitting Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 1916-1923.	2.0	44
28	Highly dispersed photoactive zinc oxide nanoparticles on mesoporous phosphonated titania hybrid. Applied Catalysis B: Environmental, 2014, 156-157, 44-52.	20.2	39
29	Singleâ€Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes. Angewandte Chemie, 2019, 131, 14741-14746.	2.0	39
30	Co ²⁺ -loaded periodic mesoporous aluminum phosphonates for efficient modified Fenton catalysis. RSC Advances, 2015, 5, 7628-7636.	3.6	38
31	P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. Chinese Journal of Catalysis, 2019, 40, 1366-1374.	14.0	38
32	New Opportunities for Functional Materials from Metal Phosphonates. , 2020, 2, 582-594.		33
33	Mesoporous nickel phosphate/phosphonate hybrid microspheres with excellent performance for adsorption and catalysis. RSC Advances, 2014, 4, 16018-16021.	3.6	32
34	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 3276-3281.	2.0	29
35	Unprecedented Surface Plasmon Modes in Monoclinic MoO ₂ Nanostructures. Advanced Materials, 2020, 32, e1908392.	21.0	28
36	Scalable Self-Supported Graphene Foam for High-Performance Electrocatalytic Oxygen Evolution. ACS Applied Materials & Diterfaces, 2017, 9, 41980-41987.	8.0	22

#	Article	IF	Citations
37	In situ simultaneous reduction–doping route to synthesize hematite/N-doped graphene nanohybrids with excellent photoactivity. RSC Advances, 2014, 4, 31754-31758.	3 . 6	17
38	Unprecedented carbon sub-microspheres with a porous hierarchy for highly efficient oxygen electrochemistry. Nanoscale, 2017, 9, 18731-18736.	5.6	17
39	Hierarchical Structures from Inorganic Nanocrystal Self-Assembly for Photoenergy Utilization. International Journal of Photoenergy, 2014, 2014, 1-15.	2.5	12
40	Water Electrolysis: Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation (Adv. Funct.) Tj ETQq0 () O rgB T /C	Ove 6 lock 10 Tf
41	Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , .	0.1	6
42	History and Classification of Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 7-23.	0.1	3
43	When Carbon Meets CO ₂ : Functional Carbon Nanostructures for CO ₂ Utilization. Journal of Nanoscience and Nanotechnology, 2019, 19, 3148-3161.	0.9	3
44	Titelbild: Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis (Angew. Chem. 5/2017). Angewandte Chemie, 2017, 129, 1181-1181.	2.0	2
45	Modification and Potential Applications of Organic–Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 75-118.	0.1	0
46	Strategies to Incorporate Mesoporosity. Springer Briefs in Molecular Science, 2015, , 25-59.	0.1	0
47	Morphological Design of Mesoporous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 61-73	0.1	O