
Annemie Bogaerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2334920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward defining plasma treatment dose: The role of plasma treatment energy of pulsedâ€dielectric barrier discharge in dictating in vitro biological responses. Plasma Processes and Polymers, 2022, 19, e2100151.	3.0	8
2	Plasma-Catalytic Methanol Synthesis from CO ₂ Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catalysis, 2022, 12, 1326-1337.	11.2	50
3	Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 127-157.	3.7	64
4	Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance. Journal of CO2 Utilization, 2022, 56, 101869.	6.8	30
5	Sustainable NO _{<i>x</i>} production from air in pulsed plasma: elucidating the chemistry behind the low energy consumption. Green Chemistry, 2022, 24, 916-929.	9.0	41
6	Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study. Archives of Biochemistry and Biophysics, 2022, 717, 109136.	3.0	2
7	Cold Atmospheric Plasma Does Not Affect Stellate Cells Phenotype in Pancreatic Cancer Tissue in Ovo. International Journal of Molecular Sciences, 2022, 23, 1954.	4.1	15
8	Energyâ€Efficient Small‣cale Ammonia Synthesis Process with Plasmaâ€Enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NO _{<i>x</i>). ChemSusChem, 2022, 15, .}	6.8	25
9	Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal?. Biomedicines, 2022, 10, 823.	3.2	9
10	Foundations of plasma catalysis for environmental applications. Plasma Sources Science and Technology, 2022, 31, 053002.	3.1	28
11	Oxygenate Production from Plasma-Activated Reaction of CO ₂ and Ethane. ACS Energy Letters, 2022, 7, 236-241.	17.4	24
12	Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations. Journal of Chemical Information and Modeling, 2022, 62, 129-141.	5.4	9
13	Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor. Chemical Engineering Journal, 2022, 443, 136529.	12.7	18
14	The effect of local <scp>nonâ€thermal</scp> plasma therapy on the <scp>cancerâ€immunity</scp> cycle in a melanoma mouse model. Bioengineering and Translational Medicine, 2022, 7, .	7.1	15
15	Editorial: Special issue on CO2 utilization with plasma technology. Journal of CO2 Utilization, 2022, 61, 102017.	6.8	4
16	Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream. Chemical Engineering Journal, 2022, 442, 136268.	12.7	18
17	Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling. Plasma Sources Science and Technology, 2022, 31, 055014.	3.1	8
18	Feature Papers to Celebrate "Environmental Catalysisâ€â€"Trends & Outlook. Catalysts, 2022, 12, 720.	3.5	0

#	Article	IF	CITATIONS
19	The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied Physics, 2022, 55, 373001.	2.8	139
20	Insights into the limitations to vibrational excitation of CO ₂ : validation of a kinetic model with pulsed glow discharge experiments. Plasma Sources Science and Technology, 2022, 31, 074003.	3.1	13
21	Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response. Redox Biology, 2022, 55, 102399.	9.0	6
22	Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions. Chemical Engineering Journal, 2022, 450, 137860.	12.7	21
23	How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane. Chemical Engineering Journal, 2021, 405, 126618.	12.7	23
24	On the kinetics and equilibria of plasma-based dry reforming of methane. Chemical Engineering Journal, 2021, 405, 126630.	12.7	30
25	From the Birkeland–Eyde process towards energy-efficient plasma-based NO _X synthesis: a techno-economic analysis. Energy and Environmental Science, 2021, 14, 2520-2534.	30.8	96
26	Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement. Sustainable Energy and Fuels, 2021, 5, 1786-1800.	4.9	29
27	Plasma-Catalytic Partial Oxidation of Methane on Pt(111): A Microkinetic Study on the Role of Different Plasma Species. Journal of Physical Chemistry C, 2021, 125, 2966-2983.	3.1	27
28	Positive and negative streamer propagation in volume dielectric barrier discharges with planar and porous electrodes. Plasma Processes and Polymers, 2021, 18, 2000234.	3.0	20
29	Spatially and temporally non-uniform plasmas: microdischarges from the perspective of molecules in a packed bed plasma reactor. Journal Physics D: Applied Physics, 2021, 54, 174002.	2.8	13
30	Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma. Cancers, 2021, 13, 579.	3.7	26
31	Cocktail of reactive species generated by cold atmospheric plasma: oral administration induces non-small cell lung cancer cell death. Journal Physics D: Applied Physics, 2021, 54, 185202.	2.8	15
32	Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Cancers, 2021, 13, 1618.	3.7	10
33	Plasma propagation in a single bead DBD reactor at different dielectric constants: insights from fluid modelling. Journal Physics D: Applied Physics, 2021, 54, 214004.	2.8	16
34	Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death. Free Radical Biology and Medicine, 2021, 166, 187-200.	2.9	24
35	Probing the impact of material properties of core-shell SiO2@TiO2 spheres on the plasma-catalytic CO2 dissociation using a packed bed DBD plasma reactor. Journal of CO2 Utilization, 2021, 46, 101468.	6.8	14
36	Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage. Cancers, 2021, 13, 1780.	3.7	28

#	Article	IF	CITATIONS
37	Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling. Analytical Chemistry, 2021, 93, 6620-6628.	6.5	4
38	Thermal instability and volume contraction in a pulsed microwave N ₂ plasma at sub-atmospheric pressure. Plasma Sources Science and Technology, 2021, 30, 055005.	3.1	14
39	Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106091.	2.9	10
40	Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2021, 11, 590.	3.5	13
41	The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling. International Journal of Molecular Sciences, 2021, 22, 5033.	4.1	4
42	Lipid Oxidation: Role of Membrane Phase-Separated Domains. Journal of Chemical Information and Modeling, 2021, 61, 2857-2868.	5.4	12
43	Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling. Plasma Sources Science and Technology, 2021, 30, 065007.	3.1	10
44	The essential role of the plasma sheath in plasma–liquid interaction and its applications—A perspective. Journal of Applied Physics, 2021, 129, .	2.5	27
45	Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy. Redox Biology, 2021, 43, 101968.	9.0	41
46	Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Scientific Reports, 2021, 11, 14003.	3.3	45
47	Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells. International Journal of Biological Macromolecules, 2021, 182, 1724-1736.	7.5	21
48	Unraveling the permeation of reactive species across nitrated membranes by computer simulations. Computers in Biology and Medicine, 2021, 136, 104768.	7.0	7
49	Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 13151-13163.	6.7	45
50	Advances in non-equilibrium \$\$hbox {CO}_2\$\$ plasma kinetics: a theoretical and experimental review. European Physical Journal D, 2021, 75, 1.	1.3	47
51	Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling. Applied Catalysis B: Environmental, 2021, 296, 120384.	20.2	32
52	Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H ₂ at Reduced Temperature. ACS Catalysis, 2021, 11, 1765-1773.	11.2	29
53	NO _x production in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation. Green Chemistry, 2021, 23, 1748-1757.	9.0	68
54	Nitrogen fixation in an electrode-free microwave plasma. Joule, 2021, 5, 3006-3030.	24.0	63

#	Article	IF	CITATIONS
55	Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms. Catalysts, 2021, 11, 1230.	3.5	24
56	Multiscale modeling of plasma–surface interaction—General picture and a case study of Si and SiO2 etching by fluorocarbon-based plasmas. Applied Physics Reviews, 2021, 8, .	11.3	8
57	Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells, 2021, 10, 2936.	4.1	35
58	Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency?. Journal of CO2 Utilization, 2021, 54, 101767.	6.8	13
59	Plasma–liquid interactions. Journal of Applied Physics, 2021, 130, .	2.5	11
60	Power Pulsing To Maximize Vibrational Excitation Efficiency in N ₂ Microwave Plasma: A Combined Experimental and Computational Study. Journal of Physical Chemistry C, 2020, 124, 1765-1779.	3.1	34
61	Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature. Chemical Engineering Journal, 2020, 382, 122745.	12.7	63
62	Chemistry reduction of complex CO ₂ chemical kinetics: application to a gliding arc plasma. Plasma Sources Science and Technology, 2020, 29, 025012.	3.1	15
63	Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium. Journal of Physical Chemistry Letters, 2020, 11, 401-406.	4.6	7
64	Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows. Journal of Physical Chemistry C, 2020, 124, 22871-22883.	3.1	52
65	Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment. Frontiers in Physics, 2020, 8, .	2.1	14
66	Plasma in Cancer Treatment. Cancers, 2020, 12, 2617.	3.7	7
67	Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells. Cancers, 2020, 12, 2782.	3.7	20
68	Plasma Catalysis for CO ₂ Hydrogenation: Unlocking New Pathways toward CH ₃ OH. Journal of Physical Chemistry C, 2020, 124, 25859-25872.	3.1	35
69	Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells. Cancers, 2020, 12, 3575.	3.7	23
70	Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants, 2020, 9, 1188.	5.1	36
71	Arc plasma reactor modification for enhancing performance of dry reforming of methane. Journal of CO2 Utilization, 2020, 42, 101352.	6.8	26
72	Advances in Plasma Oncology toward Clinical Translation. Cancers, 2020, 12, 3283.	3.7	3

#	Article	IF	CITATIONS
73	Plasma-Based CO ₂ Conversion: To Quench or Not to Quench?. Journal of Physical Chemistry C, 2020, 124, 18401-18415.	3.1	43
74	Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes. Biomolecules, 2020, 10, 1114.	4.0	3
75	Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge. Journal of Physics: Conference Series, 2020, 1492, 012007.	0.4	Ο
76	How do nitrated lipids affect the properties of phospholipid membranes?. Archives of Biochemistry and Biophysics, 2020, 695, 108548.	3.0	10
77	Towards Green Ammonia Synthesis through Plasmaâ€Driven Nitrogen Oxidation and Catalytic Reduction. Angewandte Chemie, 2020, 132, 24033-24037.	2.0	20
78	Towards Green Ammonia Synthesis through Plasmaâ€Driven Nitrogen Oxidation and Catalytic Reduction. Angewandte Chemie - International Edition, 2020, 59, 23825-23829.	13.8	58
79	Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. Green Chemistry, 2020, 22, 6258-6287.	9.0	163
80	Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy. Oxidative Medicine and Cellular Longevity, 2020, 1-10.	4.0	6
81	On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways. Cells, 2020, 9, 2330.	4.1	16
82	Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli. Computers in Biology and Medicine, 2020, 127, 104064.	7.0	4
83	Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit. ACS Catalysis, 2020, 10, 6726-6734.	11.2	78
84	The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion. Catalysts, 2020, 10, 530.	3.5	9
85	The penetration of reactive oxygen and nitrogen species across the stratum corneum. Plasma Processes and Polymers, 2020, 17, 2000005.	3.0	20
86	Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor. Chemical Engineering Journal, 2020, 397, 125519.	12.7	52
87	Plasma-Based N ₂ Fixation into NO _{<i>x</i>} : Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron. ACS Sustainable Chemistry and Engineering, 2020, 8, 9711-9720.	6.7	88
88	Activation of CO ₂ on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons. Journal of Physical Chemistry C, 2020, 124, 6747-6755.	3.1	33
89	Plasma-Based CH ₄ Conversion into Higher Hydrocarbons and H ₂ : Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources. Journal of Physical Chemistry C, 2020, 124, 7016-7030.	3.1	61
90	Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO ₂ . Plasma Sources Science and Technology, 2020, 29, 045019.	3.1	8

#	Article	IF	CITATIONS
91	Dual-vortex plasmatron: A novel plasma source for CO2 conversion. Journal of CO2 Utilization, 2020, 39, 101152.	6.8	30
92	Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 6043-6054.	6.7	38
93	The effect of H ₂ O on the vibrational populations of CO ₂ in a CO ₂ /H ₂ O microwave plasma: a kinetic modelling investigation. Plasma Sources Science and Technology, 2020, 29, 095009.	3.1	7
94	Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps. Frontiers in Energy Research, 2020, 8, .	2.3	101
95	H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma. Plasma Chemistry and Plasma Processing, 2020, 40, 1163-1187.	2.4	13
96	Nitrogen Fixation with Water Vapor by Nonequilibrium Plasma: toward Sustainable Ammonia Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 2996-3004.	6.7	92
97	Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis. Plasma Sources Science and Technology, 2020, 29, 045020.	3.1	36
98	Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study. International Journal of Biological Macromolecules, 2020, 148, 657-665.	7.5	13
99	Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences. Journal of Physical Chemistry B, 2020, 124, 1082-1089.	2.6	16
100	Modeling plasmas in analytical chemistry—an example of cross-fertilization. Analytical and Bioanalytical Chemistry, 2020, 412, 6059-6083.	3.7	2
101	Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study. International Journal of Biological Macromolecules, 2020, 163, 2405-2414.	7.5	19
102	CO ₂ and CH ₄ conversion in "real―gas mixtures in a gliding arc plasmatron: how do N ₂ and O ₂ affect the performance?. Green Chemistry, 2020, 22, 1366-1377.	9.0	33
103	The 2020 plasma catalysis roadmap. Journal Physics D: Applied Physics, 2020, 53, 443001.	2.8	362
104	Plasma and Plasma–Cell Interaction Simulations. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 169-208.	0.2	1
105	OES of a CO ₂ -Ar Microwave Discharge to Support Modelling. , 2020, , .		0
106	White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Processes and Polymers, 2019, 16, 1700238.	3.0	104
107	Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy. Cancers, 2019, 11, 1109.	3.7	46
108	Ceramide crossâ€linking leads to pore formation: Potential mechanism behind CAP enhancement of transdermal drug delivery. Plasma Processes and Polymers, 2019, 16, 1900122.	3.0	4

#	Article	IF	CITATIONS
109	How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage: an experimental and computational study. Physical Chemistry Chemical Physics, 2019, 21, 19327-19341.	2.8	28
110	Applications of the COST Plasma Jet: More than a Reference Standard. Plasma, 2019, 2, 316-327.	1.8	30
111	Improving the Energy Efficiency of CO ₂ Conversion in Nonequilibrium Plasmas through Pulsing. Journal of Physical Chemistry C, 2019, 123, 17650-17665.	3.1	33
112	Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research, 2019, 47, 7130-7142.	14.5	23
113	Perspectives of Plasma-treated Solutions as Anticancer Drugs. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 436-438.	1.7	14
114	Plasma-Based CO2 Conversion. , 2019, , 287-325.		4
115	Molecular dynamics simulations of mechanical stress on oxidized membranes. Biophysical Chemistry, 2019, 254, 106266.	2.8	6
116	ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-29.	4.0	168
117	Effect of oxidative stress on cystine transportation by xC‾ antiporter. Archives of Biochemistry and Biophysics, 2019, 674, 108114.	3.0	7
118	Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells. Cancers, 2019, 11, 1597.	3.7	77
119	Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis. Cancers, 2019, 11, 1237.	3.7	40
120	Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment. Cancers, 2019, 11, 1287.	3.7	81
121	Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration. Chemical Engineering Journal, 2019, 362, 830-841.	12.7	50
122	Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research?. Physical Chemistry Chemical Physics, 2019, 21, 4117-4121.	2.8	28
123	Combining CO2 conversion and N2 fixation in a gliding arc plasmatron. Journal of CO2 Utilization, 2019, 33, 121-130.	6.8	28
124	Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	32
125	Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study. Physical Chemistry Chemical Physics, 2019, 21, 12881-12894.	2.8	55
126	Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process. Water Research, 2019, 161, 549-559.	11.3	41

#	Article	IF	CITATIONS
127	How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion. Chemical Engineering Journal, 2019, 372, 1253-1264.	12.7	56
128	Nanosecond Pulsed Discharge for CO ₂ Conversion: Kinetic Modeling To Elucidate the Chemistry and Improve the Performance. Journal of Physical Chemistry C, 2019, 123, 12104-12116.	3.1	48
129	Burning questions of plasma catalysis: Answers by modeling. Catalysis Today, 2019, 337, 3-14.	4.4	62
130	Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling. Frontiers of Chemical Science and Engineering, 2019, 13, 253-263.	4.4	27
131	Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2019, 9, 275.	3.5	116
132	Oxidation destabilizes toxic amyloid beta peptide aggregation. Scientific Reports, 2019, 9, 5476.	3.3	33
133	Suppressing the formation of NO _x and N ₂ O in CO ₂ /N ₂ dielectric barrier discharge plasma by adding CH ₄ : scavenger chemistry at work. Sustainable Energy and Fuels, 2019, 3, 1388-1395.	4.9	10
134	Transport of cystine across xCâ^ antiporter. Archives of Biochemistry and Biophysics, 2019, 664, 117-126.	3.0	10
135	Editorial Catalysts: Special Issue on Plasma Catalysis. Catalysts, 2019, 9, 196.	3.5	5
136	A 2D model of a gliding arc discharge for CO2 conversion. AIP Conference Proceedings, 2019, , .	0.4	6
137	Nonâ€Thermal Plasma as a Unique Delivery System of Shortâ€Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells. Advanced Science, 2019, 6, 1802062.	11.2	177
138	CO ₂ Activation on TiO ₂ -Supported Cu ₅ and Ni ₅ Nanoclusters: Effect of Plasma-Induced Surface Charging. Journal of Physical Chemistry C, 2019, 123, 6516-6525.	3.1	27
139	Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers, 2019, 11, 1920.	3.7	56
140	28. Plasma-based CO ₂ conversion. , 2019, , 585-634.		5
141	Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera. Journal Physics D: Applied Physics, 2019, 52, 065201.	2.8	30
142	Altering Conversion and Product Selectivity of Dry Reforming of Methane in a Dielectric Barrier Discharge by Changing the Dielectric Packing Material. Catalysts, 2019, 9, 51.	3.5	40
143	Plasma Catalysis Modeling. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 69-114.	0.2	0
144	Propagation of a plasma streamer in catalyst pores. Plasma Sources Science and Technology, 2018, 27, 035009.	3.1	56

#	Article	IF	CITATIONS
145	Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy. RSC Advances, 2018, 8, 9887-9894.	3.6	12
146	High Coke Resistance of a TiO ₂ Anatase (001) Catalyst Surface during Dry Reforming of Methane. Journal of Physical Chemistry C, 2018, 122, 9389-9396.	3.1	7
147	Atomic scale simulation of H ₂ O ₂ permeation through aquaporin: toward the understanding of plasma cancer treatment. Journal Physics D: Applied Physics, 2018, 51, 125401.	2.8	42
148	Foundations of modelling of nonequilibrium low-temperature plasmas. Plasma Sources Science and Technology, 2018, 27, 023002.	3.1	92
149	Transport and accumulation of plasma generated species in aqueous solution. Physical Chemistry Chemical Physics, 2018, 20, 6845-6859.	2.8	112
150	Modeling Plasma-based CO ₂ and CH ₄ Conversion in Mixtures with N ₂ , O ₂ , and H ₂ O: The Bigger Plasma Chemistry Picture. Journal of Physical Chemistry C, 2018, 122, 8704-8723.	3.1	111
151	Effect of plasma-induced surface charging on catalytic processes: application to CO ₂ activation. Plasma Sources Science and Technology, 2018, 27, 024001.	3.1	51
152	Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chemical Engineering Journal, 2018, 334, 2467-2479.	12.7	141
153	Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet. Physical Chemistry Chemical Physics, 2018, 20, 2797-2808.	2.8	59
154	A packed-bed DBD micro plasma reactor for CO2 dissociation: Does size matter?. Chemical Engineering Journal, 2018, 348, 557-568.	12.7	115
155	Investigation of plasmaâ€induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 2018, 15, 1700226.	3.0	42
156	Enhancement of plasma generation in catalyst pores with different shapes. Plasma Sources Science and Technology, 2018, 27, 055008.	3.1	26
157	Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results?. Journal Physics D: Applied Physics, 2018, 51, 204003.	2.8	24
158	Pinpointing energy losses in CO2 plasmas – Effect on CO2 conversion. Journal of CO2 Utilization, 2018, 24, 479-499.	6.8	22
159	Plasma Technology: An Emerging Technology for Energy Storage. ACS Energy Letters, 2018, 3, 1013-1027.	17.4	363
160	Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations. Journal of CO2 Utilization, 2018, 24, 386-397.	6.8	41
161	Synthesis and in vitro investigation of halogenated 1,3â€bis(4â€nitrophenyl)triazenide salts as antitubercular compounds. Chemical Biology and Drug Design, 2018, 91, 631-640.	3.2	14
162	Modeling for a Better Understanding of Plasma-Based CO2 Conversion. , 2018, , .		1

#	Article	IF	CITATIONS
163	Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species. Cancers, 2018, 10, 394.	3.7	69
164	Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol. Scientific Reports, 2018, 8, 15929.	3.3	33
165	Three-dimensional modeling of energy transport in a gliding arc discharge in argon. Plasma Sources Science and Technology, 2018, 27, 125011.	3.1	13
166	Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots. Analytical Chemistry, 2018, 90, 13151-13158.	6.5	103
167	Plasma streamer propagation in structured catalysts. Plasma Sources Science and Technology, 2018, 27, 105013.	3.1	13
168	Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO ₂ Conversion. Journal of Physical Chemistry C, 2018, 122, 25869-25881.	3.1	28
169	Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS ONE, 2018, 13, e0202919.	2.5	112
170	Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms. ACS Applied Energy Materials, 2018, 1, 4824-4839.	5.1	116
171	Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound. Scientific Reports, 2018, 8, 7736.	3.3	67
172	CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Scientific Reports, 2018, 8, 10218.	3.3	25
173	Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS. Analytical Chemistry, 2018, 90, 10271-10278.	6.5	18
174	Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Scientific Reports, 2018, 8, 11268.	3.3	101
175	Capacitive electrical asymmetry effect in an inductively coupled plasma reactor. Plasma Sources Science and Technology, 2018, 27, 105019.	3.1	3
176	Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chemical Engineering Journal, 2018, 353, 297-304.	12.7	34
177	Study of an AC dielectric barrier single micro-discharge filament over a water film. Scientific Reports, 2018, 8, 10919.	3.3	19
178	Plasma physics of liquids—A focused review. Applied Physics Reviews, 2018, 5, 031103.	11.3	149
179	Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. Journal Physics D: Applied Physics, 2018, 51, 365203.	2.8	32
180	The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor. Redox Biology, 2018, 19, 1-10.	9.0	31

#	Article	IF	CITATIONS
181	Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges. Catalysts, 2018, 8, 248.	3.5	22
182	Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations. Plasma, 2018, 1, 119-125.	1.8	3
183	Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma Processes and Polymers, 2018, 15, 1800022.	3.0	26
184	Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products. Journal of Hazardous Materials, 2018, 354, 180-190.	12.4	22
185	Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study. Journal Physics D: Applied Physics, 2018, 51, 255401.	2.8	27
186	Importance of surface charging during plasma streamer propagation in catalyst pores. Plasma Sources Science and Technology, 2018, 27, 065009.	3.1	35
187	Molecular biochemical characterization of selective glucocorticoid receptor activities of GSK866 analogues with cysteine reactive warheads. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-5-6.	0.0	0
188	Special Issue on Numerical Modelling of Lowâ€Temperature Plasmas for Various Applications – Part I: Review and Tutorial Papers on Numerical Modelling Approaches. Plasma Processes and Polymers, 2017, 14, 1690011.	3.0	4
189	Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity. Scientific Reports, 2017, 7, 39526.	3.3	76
190	DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 2017, 205, 605-614.	20.2	57
191	Routes to increase the conversion and the energy efficiency in the splitting of CO ₂ by a dielectric barrier discharge. Journal Physics D: Applied Physics, 2017, 50, 084004.	2.8	74
192	Atomic scale behavior of oxygen-based radicals in water. Journal Physics D: Applied Physics, 2017, 50, 11LT01.	2.8	19
193	Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 839-847.	2.4	116
194	Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. ChemSusChem, 2017, 10, 2145-2157.	6.8	155
195	Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale. Journal of Physical Chemistry C, 2017, 121, 5787-5799.	3.1	18
196	Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations. Accounts of Chemical Research, 2017, 50, 796-804.	15.6	16
197	CO ₂ conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Science and Technology, 2017, 26, 063001.	3.1	90
198	Concurrent effects of wafer temperature and oxygen fraction on cryogenic silicon etching with SF ₆ /O ₂ plasmas. Plasma Processes and Polymers, 2017, 14, 1700018.	3.0	9

#	Article	IF	CITATIONS
199	Special issue on numerical modelling of lowâ€ŧemperature plasmas for various applications — part II: Research papers on numerical modelling for various plasma applications. Plasma Processes and Polymers, 2017, 14, 1790041.	3.0	2
200	Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion. ChemSusChem, 2017, 10, 2642-2652.	6.8	114
201	Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. ChemSusChem, 2017, 10, 2110-2110.	6.8	17
202	Back Cover: Plasma Process. Polym. 4–5â^•2017. Plasma Processes and Polymers, 2017, 14, 1770007.	3.0	0
203	Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics. Plasma Sources Science and Technology, 2017, 26, 015003.	3.1	33
204	Pressure as an additional control handle for non-thermal atmospheric plasma processes. Plasma Processes and Polymers, 2017, 14, 1700046.	3.0	4
205	CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 2017, 326, 477-488.	12.7	154
206	Nanoscale mechanisms of CNT growth and etching in plasma environment. Journal Physics D: Applied Physics, 2017, 50, 184001.	2.8	14
207	Modeling of CO ₂ Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency. Journal of Physical Chemistry C, 2017, 121, 8236-8251.	3.1	122
208	Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas. Plasma Sources Science and Technology, 2017, 26, 054002.	3.1	60
209	Phosphatidylserine flipâ€flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling. Plasma Processes and Polymers, 2017, 14, 1700013.	3.0	18
210	QDB: a new database of plasma chemistries and reactions. Plasma Sources Science and Technology, 2017, 26, 055014.	3.1	42
211	Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes. Carbon, 2017, 118, 452-457.	10.3	5
212	Investigations of discharge and post-discharge in a gliding arc: a 3D computational study. Plasma Sources Science and Technology, 2017, 26, 055017.	3.1	25
213	The Chemical Route to a Carbon Dioxide Neutral World. ChemSusChem, 2017, 10, 1039-1055.	6.8	174
214	CO 2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling. Journal of CO2 Utilization, 2017, 17, 220-234.	6.8	106
215	How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching. Nanoscale, 2017, 9, 1653-1661.	5.6	9
216	Inductively coupled plasma-mass spectrometry: insights through computer modeling. Journal of Analytical Atomic Spectrometry, 2017, 32, 233-261.	3.0	28

#	Article	IF	CITATIONS
217	Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO ₂ conversion. Plasma Sources Science and Technology, 2017, 26, 125002.	3.1	34
218	Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide. Scientific Reports, 2017, 7, 13828.	3.3	34
219	CO ₂ Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency. Journal of Physical Chemistry C, 2017, 121, 24470-24479.	3.1	46
220	Modeling of CO ₂ plasma: effect of uncertainties in the plasma chemistry. Plasma Sources Science and Technology, 2017, 26, 115002.	3.1	36
221	Plasma technology – a novel solution for CO ₂ conversion?. Chemical Society Reviews, 2017, 46, 5805-5863.	38.1	760
222	CO ₂ Conversion in a Gliding Arc Plasmatron: Elucidating the Chemistry through Kinetic Modeling. Journal of Physical Chemistry C, 2017, 121, 22644-22655.	3.1	25
223	Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Scientific Reports, 2017, 7, 5761.	3.3	88
224	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	2.8	710
225	Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach. Chemical Engineering Journal, 2017, 330, 11-25.	12.7	97
226	Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity. Scientific Reports, 2017, 7, 16478.	3.3	103
227	Mechanisms for plasma cryogenic etching of porous materials. Applied Physics Letters, 2017, 111, .	3.3	5
228	A DFT study of H-dissolution into the bulk of a crystalline Ni(111) surface: a chemical identifier for the reaction kinetics. Physical Chemistry Chemical Physics, 2017, 19, 19150-19158.	2.8	29
229	How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study. Plasma Sources Science and Technology, 2017, 26, 085007.	3.1	90
230	Plasmaâ€based liquefaction of methane: The road from hydrogen production to direct methane liquefaction. Plasma Processes and Polymers, 2017, 14, 1600115.	3.0	32
231	A Comprehensive Chemical Model for the Splitting of CO ₂ in Nonâ€Equilibrium Plasmas. Plasma Processes and Polymers, 2017, 14, 1600155.	3.0	54
232	Synthesis of Micro- and Nanomaterials in CO ₂ and CO Dielectric Barrier Discharges. Plasma Processes and Polymers, 2017, 14, 1600065.	3.0	15
233	Plasma based CO ₂ and CH ₄ conversion: A modeling perspective. Plasma Processes and Polymers, 2017, 14, 1600070.	3.0	71
234	Influence of Gap Size and Dielectric Constant of the Packing Material on the Plasma Behaviour in a Packed Bed DBD Reactor: A Fluid Modelling Study. Plasma Processes and Polymers, 2017, 14, 1600129.	3.0	74

#	Article	IF	CITATIONS
235	Quasiâ€Neutral Modeling of Gliding Arc Plasmas. Plasma Processes and Polymers, 2017, 14, 1600110.	3.0	24
236	Harvesting Renewable Energy for Carbon Dioxide Catalysis. Energy Technology, 2017, 5, 796-811.	3.8	42
237	Understanding Microwave Surfaceâ€Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments. Plasma Processes and Polymers, 2017, 14, 1600185.	3.0	34
238	The Quest for Valueâ€Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study. ChemSusChem, 2017, 10, 409-424.	6.8	72
239	Dry Reforming of Methane in a Cliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry. ChemSusChem, 2017, 10, 4025-4036.	6.8	64
240	Selective Glucocorticoid Receptor Properties of GSK866 Analogs with Cysteine Reactive Warheads. Frontiers in Immunology, 2017, 8, 1324.	4.8	10
241	Modeling of plasma-based CO ₂ conversion: lumping of the vibrational levels. Plasma Sources Science and Technology, 2016, 25, 045022.	3.1	72
242	How do the barrier thickness and dielectric material influence the filamentary mode and CO ₂ conversion in a flowing DBD?. Plasma Sources Science and Technology, 2016, 25, 045016.	3.1	71
243	A 3D model of a reverse vortex flow gliding arc reactor. Plasma Sources Science and Technology, 2016, 25, 035014.	3.1	43
244	Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells. Plasma Processes and Polymers, 2016, 13, 1195-1205.	3.0	57
245	Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations. Scientific Reports, 2016, 6, 19466.	3.3	11
246	Computational study of the CF ₄ /CHF ₃ / H ₂ /Cl ₂ /O _{2plasma chemistry. Journal Physics D: Applied Physics, 2016, 49, 195203.}	>â €‰ /HB	r g a s phase
247	Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon. Journal Physics D: Applied Physics, 2016, 49, 245204.	2.8	3
248	Elucidating the effects of gas flow rate on an SF6inductively coupled plasma and on the silicon etch rate, by a combined experimental and theoretical investigation. Journal Physics D: Applied Physics, 2016, 49, 385201.	2.8	1
249	How Oxygen Vacancies Activate CO ₂ Dissociation on TiO ₂ Anatase (001). Journal of Physical Chemistry C, 2016, 120, 21659-21669.	3.1	141
250	Modeling plasma-based CO ₂ conversion: crucial role of the dissociation cross section. Plasma Sources Science and Technology, 2016, 25, 055016.	3.1	87
251	Effective ionisation coefficients and critical breakdown electric field of CO ₂ at elevated temperature: effect of excited states and ion kinetics. Plasma Sources Science and Technology, 2016, 25, 055025.	3.1	23
252	Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations. Analytical Chemistry, 2016, 88, 8005-8018.	6.5	10

#	Article	IF	CITATIONS
253	DBD in burst mode: solution for more efficient CO ₂ conversion?. Plasma Sources Science and Technology, 2016, 25, 055005.	3.1	39
254	CO ₂ Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed. Journal of Physical Chemistry C, 2016, 120, 25210-25224.	3.1	70
255	CO ₂ conversion in a gliding arc plasma: 1D cylindrical discharge model. Plasma Sources Science and Technology, 2016, 25, 065012.	3.1	65
256	Plasma processes and polymers third special issue on plasma and cancer. Plasma Processes and Polymers, 2016, 13, 1142-1143.	3.0	1
257	Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Scientific Reports, 2016, 6, 34419.	3.3	71
258	Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores. Journal of Physical Chemistry C, 2016, 120, 25923-25934.	3.1	82
259	Appearance of a conductive carbonaceous coating in a CO ₂ dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sources Science and Technology, 2016, 25, 015023.	3.1	52
260	Multi-level molecular modelling for plasma medicine. Journal Physics D: Applied Physics, 2016, 49, 054002.	2.8	26
261	CO ₂ conversion in a dielectric barrier discharge plasma: N ₂ in the mix as a helping hand or problematic impurity?. Energy and Environmental Science, 2016, 9, 999-1011.	30.8	154
262	Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185, 56-67.	20.2	162
263	Special Issue of Papers by Plenary and Topical Invited Lecturers at the 22nd International Symposium on Plasma Chemistry (ISPC 22), 5–10 July 2015, Antwerp, Belgium: Introduction. Plasma Chemistry and Plasma Processing, 2016, 36, 1-2.	2.4	13
264	The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO ₂ . Plasma Sources Science and Technology, 2016, 25, 025013.	3.1	96
265	Selective Plasma Oxidation of Ultrasmall Si Nanowires. Journal of Physical Chemistry C, 2016, 120, 472-477.	3.1	4
266	Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science and Technology, 2016, 25, 015002.	3.1	111
267	Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science, 2016, 7, 489-498.	7.4	307
268	Particle transport through an inductively coupled plasma torch: elemental droplet evaporation. Journal of Analytical Atomic Spectrometry, 2016, 31, 631-641.	3.0	30
269	A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Scientific Reports, 2015, 5, 13849.	3.3	73
270	Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma. Journal of Applied Physics, 2015, 118, .	2.5	5

#	Article	IF	CITATIONS
271	Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study. Journal of Applied Physics, 2015, 117, .	2.5	19
272	Improving the Conversion and Energy Efficiency of Carbon Dioxide Splitting in a Zirconiaâ€Packed Dielectric Barrier Discharge Reactor. Energy Technology, 2015, 3, 1038-1044.	3.8	122
273	Effect of Argon or Helium on the CO ₂ Conversion in a Dielectric Barrier Discharge. Plasma Processes and Polymers, 2015, 12, 755-763.	3.0	147
274	Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. PLoS ONE, 2015, 10, e0134638.	2.5	46
275	Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field. New Journal of Physics, 2015, 17, 103005.	2.9	37
276	Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nature Communications, 2015, 6, 10306.	12.8	61
277	CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. Journal of CO2 Utilization, 2015, 9, 74-81.	6.8	93
278	Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis. Plasma Sources Science and Technology, 2015, 24, 025004.	3.1	28
279	Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study. ChemSusChem, 2015, 8, 702-716.	6.8	284
280	How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations. Biointerphases, 2015, 10, .	1.6	19
281	Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	7
282	Electromagnetic effects in high-frequency large-area capacitive discharges: A review. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	24
283	Plasma-based conversion of CO ₂ : current status and future challenges. Faraday Discussions, 2015, 183, 217-232.	3.2	199
284	Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases, 2015, 10, 029518.	1.6	226
285	Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Advances, 2015, 5, 29799-29808.	3.6	116
286	CO ₂ Conversion in a Microwave Plasma Reactor in the Presence of N ₂ : Elucidating the Role of Vibrational Levels. Journal of Physical Chemistry C, 2015, 119, 12815-12828.	3.1	115
287	Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine. Journal Physics D: Applied Physics, 2015, 48, 155202.	2.8	30
288	Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2015, 578, 133-138.	1.8	72

#	Article	IF	CITATIONS
289	Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New Journal of Physics, 2015, 17, 033003.	2.9	49
290	Cryogenic etching of silicon with SF ₆ inductively coupled plasmas: a combined modelling and experimental study. Journal Physics D: Applied Physics, 2015, 48, 155204.	2.8	25
291	Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 2015, 17, 083056.	2.9	44
292	Fluid simulation of the bias effect in inductive/capacitive discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	21
293	The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge. Journal of Physical Chemistry C, 2015, 119, 22331-22350.	3.1	106
294	Plasma Catalysis: Synergistic Effects at the Nanoscale. Chemical Reviews, 2015, 115, 13408-13446.	47.7	537
295	CO ₂ reduction reactions: general discussion. Faraday Discussions, 2015, 183, 261-290.	3.2	6
296	Similarities and differences between gliding glow and gliding arc discharges. Plasma Sources Science and Technology, 2015, 24, 065023.	3.1	39
297	A 2D model for a gliding arc discharge. Plasma Sources Science and Technology, 2015, 24, 015025.	3.1	57
298	Evaluation of the energy efficiency of CO ₂ conversion in microwave discharges using a reaction kinetics model. Plasma Sources Science and Technology, 2015, 24, 015024.	3.1	144
299	Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching. Journal Physics D: Applied Physics, 2015, 48, 025202.	2.8	8
300	Inactivation of the Endotoxic Biomolecule Lipid A by Oxygen Plasma Species: A Reactive Molecular Dynamics Study. Plasma Processes and Polymers, 2015, 12, 162-171.	3.0	43
301	Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge. Plasma Chemistry and Plasma Processing, 2015, 35, 217-230.	2.4	17
302	Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors. New Journal of Physics, 2014, 16, 113036.	2.9	12
303	Special issue on fundamentals of plasma–surface interactions. Journal Physics D: Applied Physics, 2014, 47, 220301.	2.8	4
304	Computational study of plasma sustainability in radio frequency micro-discharges. Journal of Applied Physics, 2014, 115, 193301.	2.5	16
305	Heating mode transition in a hybrid direct current/dual-frequency capacitively coupledCF4discharge. Journal of Applied Physics, 2014, 115, 223302.	2.5	20
306	Fluorine–Silicon Surface Reactions during Cryogenic and Near Room Temperature Etching. Journal of Physical Chemistry C, 2014, 118, 30315-30324.	3.1	26

#	Article	IF	CITATIONS
307	Incorporation of Fluorescent Dyes in Atmospheric Pressure Plasma Coatings for In-Line Monitoring of Coating Homogeneity. Plasma Processes and Polymers, 2014, 11, 678-684.	3.0	4
308	Phase modulation in pulsed dual-frequency capacitively coupled plasmas. Journal of Applied Physics, 2014, 115, .	2.5	21
309	Formation of a Nanoscale SiO ₂ Capping Layer on Photoresist Lines with an Ar/SiCl ₄ /O ₂ Inductively Coupled Plasma: A Modeling Investigation. Plasma Processes and Polymers, 2014, 11, 52-62.	3.0	2
310	Response to "Comment on â€~Laser ablation of Cu and plume expansion into 1 atm ambient gas'â€9 Phys. 115, 166101 (2014)]. Journal of Applied Physics, 2014, 115, 166102.	‰ậ€•[J. Ap 2.5	opl <u>i</u>
311	Combining molecular dynamics with Monte Carlo simulations: implementations and applications. Highlights in Theoretical Chemistry, 2014, , 277-288.	0.0	5
312	Reaction pathways of biomedically active species in an Ar plasma jet. Plasma Sources Science and Technology, 2014, 23, 035015.	3.1	58
313	Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014, 154-155, 1-8.	20.2	35
314	Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. Journal Physics D: Applied Physics, 2014, 47, 025205.	2.8	97
315	Occurrence of gas flow rotational motion inside the ICP torch: a computational and experimental study. Journal of Analytical Atomic Spectrometry, 2014, 29, 249-261.	3.0	25
316	Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis. Journal of Analytical Atomic Spectrometry, 2014, 29, 262-271.	3.0	28
317	Back Cover: Plasma Process. Polym. 10â^•2014. Plasma Processes and Polymers, 2014, 11, 994-994.	3.0	0
318	In-Situ Chemical Trapping of Oxygen in the Splitting of Carbon Dioxide by Plasma. Plasma Processes and Polymers, 2014, 11, 985-992.	3.0	49
319	Understanding plasma catalysis through modelling and simulation—a review. Journal Physics D: Applied Physics, 2014, 47, 224010.	2.8	241
320	Understanding polyethylene surface functionalization by an atmospheric He/O ₂ plasma through combined experiments and simulations. Journal Physics D: Applied Physics, 2014, 47, 224007.	2.8	29
321	Computer simulations of plasma–biomolecule and plasma–tissue interactions for a better insight in plasma medicine. Journal Physics D: Applied Physics, 2014, 47, 293001.	2.8	39
322	Thermodynamics at the nanoscale: phase diagrams of nickel–carbon nanoclusters and equilibrium constants for phase transitions. Nanoscale, 2014, 6, 11981-11987.	5.6	29
323	Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors. Nanoscale, 2014, 6, 9206-9214.	5.6	31
324	CF ₄ decomposition in a low-pressure ICP: influence of applied power and O ₂ content. Journal Physics D: Applied Physics, 2014, 47, 355205.	2.8	17

#	Article	IF	CITATIONS
325	lon irradiation for improved graphene network formation in carbon nanotube growth. Carbon, 2014, 77, 790-795.	10.3	9
326	Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure. Journal Physics D: Applied Physics, 2014, 47, 435201.	2.8	19
327	Reactive Molecular Dynamics Simulations for a Better Insight in Plasma Medicine. Plasma Processes and Polymers, 2014, 11, 1156-1168.	3.0	48
328	Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet. New Journal of Physics, 2014, 16, 063054.	2.9	43
329	Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide. Computational Materials Science, 2014, 95, 579-591.	3.0	33
330	Splitting of CO ₂ by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Science and Technology, 2014, 23, 045004.	3.1	334
331	The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP. Journal of Analytical Atomic Spectrometry, 2013, 28, 1485.	3.0	17
332	Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms. Journal Physics D: Applied Physics, 2013, 46, 205202.	2.8	82
333	The role of mass removal mechanisms in the onset of ns-laser induced plasma formation. Journal of Applied Physics, 2013, 114, 023301.	2.5	52
334	Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation. Applied Physics Letters, 2013, 103, .	3.3	23
335	Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. Journal Physics D: Applied Physics, 2013, 46, 275201.	2.8	201
336	Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2. International Journal of Hydrogen Energy, 2013, 38, 16098-16120.	7.1	70
337	Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges. Plasma Sources Science and Technology, 2013, 22, 025012.	3.1	15
338	Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: a reactive molecular dynamics investigation for plasma medicine. Journal Physics D: Applied Physics, 2013, 46, 395201.	2.8	69
339	Reactive molecular dynamics simulations on SiO ₂ -coated ultra-small Si-nanowires. Nanoscale, 2013, 5, 719-725.	5.6	21
340	Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study. Catalysis Today, 2013, 211, 131-136.	4.4	35
341	Etching of low-kmaterials for microelectronics applications by means of a N2/H2plasma: modeling and experimental investigation. Plasma Sources Science and Technology, 2013, 22, 025011.	3.1	21
342	Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF ₄ plasma. Plasma Sources Science and Technology, 2013, 22, 015017.	3.1	16

#	Article	IF	CITATIONS
343	Atomic Spectroscopy. Analytical Chemistry, 2013, 85, 670-704.	6.5	45
344	Combining molecular dynamics with Monte Carlo simulations: implementations and applications. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	51
345	Plasma-Induced Destruction of Bacterial Cell Wall Components: A Reactive Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2013, 117, 5993-5998.	3.1	136
346	New Mechanism for Oxidation of Native Silicon Oxide. Journal of Physical Chemistry C, 2013, 117, 9819-9825.	3.1	33
347	Formation of single layer graphene on nickel under far-from-equilibrium high flux conditions. Nanoscale, 2013, 5, 7250.	5.6	33
348	Gas Purification by Nonthermal Plasma: A Case Study of Ethylene. Environmental Science & Technology, 2013, 47, 6478-6485.	10.0	85
349	Plasma-Based Dry Reforming: A Computational Study Ranging from the Nanoseconds to Seconds Time Scale. Journal of Physical Chemistry C, 2013, 117, 4957-4970.	3.1	199
350	Numerical Investigation of Si <scp>O</scp> ₂ Coating Deposition in Wafer Processing Reactors with Si <scp>C</scp> I ₄ / <scp>O</scp> ₂ / <scp>A</scp> r Inductively Coupled Plasmas. Plasma Processes and Polymers, 2013, 10, 714-730.	3.0	5
351	Defect Healing and Enhanced Nucleation of Carbon Nanotubes by Low-Energy Ion Bombardment. Physical Review Letters, 2013, 110, 065501.	7.8	65
352	Heating mechanism in direct current superposed single-frequency and dual-frequency capacitively coupled plasmas. Plasma Sources Science and Technology, 2013, 22, 025014.	3.1	14
353	Modeling ultrashort laser-induced emission from a negatively biased metal. Applied Physics Letters, 2013, 103, .	3.3	9
354	Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics. Journal Physics D: Applied Physics, 2012, 45, 015203.	2.8	19
355	Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: I. Transient behaviour of electrodynamics and power deposition. Journal Physics D: Applied Physics, 2012, 45, 015202.	2.8	18
356	Fluid simulation of the phase-shift effect in Ar/CF ₄ capacitively coupled plasmas. Journal Physics D: Applied Physics, 2012, 45, 485204.	2.8	14
357	The effect of F ₂ attachment by low-energy electrons on the electron behaviour in an Ar/CF ₄ inductively coupled plasma. Plasma Sources Science and Technology, 2012, 21, 025008.	3.1	23
358	A multiphase model for pulsed ns-laser ablation of copper in an ambient gas. AIP Conference Proceedings, 2012, , .	0.4	10
359	Fluid simulation of the electromagnetic effects and the phase shift effect in Ar/CF <inf>4</inf> capacitively coupled plasmas. , 2012, , .		0
360	Modeling the Growth of SWNTs and Graphene on the Atomic Scale. ECS Transactions, 2012, 45, 73-78.	0.5	2

#	Article	IF	CITATIONS
361	Influence of Vibrational States on CO ₂ Splitting by Dielectric Barrier Discharges. Journal of Physical Chemistry C, 2012, 116, 23257-23273.	3.1	198
362	Plasma Species Interacting with Nickel Surfaces: Toward an Atomic Scale Understanding of Plasma-Catalysis. Journal of Physical Chemistry C, 2012, 116, 20958-20965.	3.1	52
363	Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications. Journal of Physics: Conference Series, 2012, 399, 012011.	0.4	8
364	Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth: Experimental and theoretical study. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1675-1682.	1.8	33
365	Optimization of operating parameters for inductively coupled plasma mass spectrometry: A computational study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 76, 56-64.	2.9	28
366	Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls. New Journal of Physics, 2012, 14, 093043.	2.9	77
367	Insights in the Plasma-Assisted Growth of Carbon Nanotubes through Atomic Scale Simulations: Effect of Electric Field. Journal of the American Chemical Society, 2012, 134, 1256-1260.	13.7	88
368	Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas. Applied Physics Letters, 2012, 101, .	3.3	36
369	Sputter deposition of MgxAlyOzthin films in a dual-magnetron device: a multi-species Monte Carlo model. New Journal of Physics, 2012, 14, 073043.	2.9	4
370	Modeling SiH ₄ /O ₂ /Ar Inductively Coupled Plasmas Used for Filling of Microtrenches in Shallow Trench Isolation (STI). Plasma Processes and Polymers, 2012, 9, 522-539.	3.0	7
371	The Effect of O ₂ in a Humid O ₂ /N ₂ /NO _{<i>x</i>} Gas Mixture on NO _{<i>x</i>} and N ₂ O Remediation by an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 2012, 9, 652-689.	3.0	39
372	An Investigation into the Dominant Reactions for Ethylene Destruction in Nonâ€Thermal Atmospheric Plasmas. Plasma Processes and Polymers, 2012, 9, 994-1000.	3.0	68
373	Effect of a mass spectrometer interface on inductively coupled plasma characteristics: a computational study. Journal of Analytical Atomic Spectrometry, 2012, 27, 604.	3.0	18
374	Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions. Journal of Applied Physics, 2012, 111, .	2.5	34
375	Vibrational level population of nitrogen impurities in low-pressure argon glow discharges. Journal of Analytical Atomic Spectrometry, 2011, 26, 804-810.	3.0	7
376	Modeling Cl ₂ /O ₂ /Ar inductively coupled plasmas used for silicon etching: effects of SiO ₂ chamber wall coating. Plasma Sources Science and Technology, 2011, 20, 045012.	3.1	29
377	Theoretical Investigation of Grain Size Tuning during Prolonged Bias-Enhanced Nucleation. Chemistry of Materials, 2011, 23, 1414-1423.	6.7	11
378	Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials. Journal Physics D: Applied Physics, 2011, 44, 174030.	2.8	34

#	Article	IF	CITATIONS
379	Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations. Plasma Sources Science and Technology, 2011, 20, 024008.	3.1	43
380	Numerical study of the plasma chemistry in inductively coupled SF ₆ and SF ₆ /Ar plasmas used for deep silicon etching applications. Journal Physics D: Applied Physics, 2011, 44, 435202.	2.8	35
381	Characterization of an Ar/O ₂ magnetron plasma by a multi-species Monte Carlo model. Plasma Sources Science and Technology, 2011, 20, 045013.	3.1	10
382	Behavior of electrons in a dual-magnetron sputter deposition system: a Monte Carlo model. New Journal of Physics, 2011, 13, 033018.	2.9	12
383	Simulation and Experimental Studies on Plasma Temperature, Flow Velocity, and Injector Diameter Effects for an Inductively Coupled Plasma. Analytical Chemistry, 2011, 83, 9260-9266.	6.5	44
384	Understanding the Surface Diffusion Processes during Magnetron Sputter-Deposition of Complex Oxide Mg–Al–O Thin Films. Crystal Growth and Design, 2011, 11, 2553-2558.	3.0	22
385	Changing Chirality during Single-Walled Carbon Nanotube Growth: A Reactive Molecular Dynamics/Monte Carlo Study. Journal of the American Chemical Society, 2011, 133, 17225-17231.	13.7	129
386	Multi-element model for the simulation of inductively coupled plasmas: Effects of helium addition to the central gas stream. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 421-431.	2.9	35
387	Simultaneous Etching and Deposition Processes during the Etching of Silicon with a Cl ₂ /O ₂ /Ar Inductively Coupled Plasma. Plasma Processes and Polymers, 2011, 8, 490-499.	3.0	8
388	Fluid Modeling of the Conversion of Methane into Higher Hydrocarbons in an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 2011, 8, 1033-1058.	3.0	129
389	A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation. Carbon, 2011, 49, 1013-1017.	10.3	20
390	The influence of Cr and Y on the micro structural evolution of Mg―Cr―O and Mg―Y―O thin films. Thin Solid Films, 2011, 519, 5388-5396.	1.8	4
391	Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system. Applied Physics Letters, 2011, 98, .	3.3	6
392	Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition. Plasma Sources Science and Technology, 2011, 20, 015008.	3.1	19
393	Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma. Physics of Plasmas, 2011, 18, .	1.9	18
394	The origin of Bohm diffusion, investigated by a comparison of different modelling methods. Journal Physics D: Applied Physics, 2010, 43, 292001.	2.8	25
395	Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation. , 2010, , .		0
396	Molecular dynamics simulation of oxide thin film growth: Importance of the inter-atomic interaction potential. Chemical Physics Letters, 2010, 485, 315-319.	2.6	17

#	Article	IF	CITATIONS
397	Bond switching regimes in nickel and nickel–carbon nanoclusters. Chemical Physics Letters, 2010, 488, 202-205.	2.6	22
398	Modeling of the plasma chemistry and plasma–surface interactions in reactive plasmas. Pure and Applied Chemistry, 2010, 82, 1283-1299.	1.9	22
399	Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science and Technology, 2010, 19, 034015.	3.1	185
400	Pulse shape influence on the atmospheric barrier discharge. Applied Physics Letters, 2010, 96, .	3.3	51
401	Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation. Applied Physics Letters, 2010, 96, .	3.3	30
402	The influence of impurities on the performance of the dielectric barrier discharge. Applied Physics Letters, 2010, 96, .	3.3	41
403	Compositional effects on the growth of Mg(M)O films. Journal of Applied Physics, 2010, 107, 034902.	2.5	35
404	Molecular dynamics simulations of Cl+ etching on a Si(100) surface. Journal of Applied Physics, 2010, 107, 113305.	2.5	25
405	Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas. Physics of Plasmas, 2010, 17, .	1.9	45
406	Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system: the effect of processing parameters. Journal Physics D: Applied Physics, 2010, 43, 315203.	2.8	19
407	Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 295.	3.0	18
408	Combined Molecular Dynamicsâ^'Continuum Study of Phase Transitions in Bulk Metals under Ultrashort Pulsed Laser Irradiation. Journal of Physical Chemistry C, 2010, 114, 5652-5660.	3.1	1
409	Insights into the Growth of (Ultra)nanocrystalline Diamond by Combined Molecular Dynamics and Monte Carlo Simulations. Crystal Growth and Design, 2010, 10, 3005-3021.	3.0	17
410	Atomic Spectroscopy: A Review. Analytical Chemistry, 2010, 82, 4653-4681.	6.5	118
411	Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: the effect of different gas mixtures. Journal Physics D: Applied Physics, 2010, 43, 205201.	2.8	58
412	Rotating cylindrical magnetron sputtering: Simulation of the reactive process. Journal of Applied Physics, 2010, 107, .	2.5	23
413	Differences between Ultrananocrystalline and Nanocrystalline Diamond Growth: Theoretical Investigation of C _{<i>x</i>} H _{<i>y</i>} Species at Diamond Step Edges. Crystal Growth and Design, 2010, 10, 4123-4134.	3.0	17
414	Catalyzed Growth of Carbon Nanotube with Definable Chirality by Hybrid Molecular Dynamicsâ^'Force Biased Monte Carlo Simulations. ACS Nano, 2010, 4, 6665-6672.	14.6	162

#	Article	IF	CITATIONS
415	Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2. Journal of Applied Physics, 2009, 105, .	2.5	24
416	Numerical study of the sputtering in a dc magnetron. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 20-28.	2.1	25
417	Investigation of etching and deposition processes of Cl ₂ /O ₂ /Ar inductively coupled plasmas on silicon by means of plasma–surface simulations and experiments. Journal Physics D: Applied Physics, 2009, 42, 095204.	2.8	35
418	Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry. Journal Physics D: Applied Physics, 2009, 42, 205206.	2.8	31
419	Computer Modeling of Plasmas and Plasma‣urface Interactions. Plasma Processes and Polymers, 2009, 6, 295-307.	3.0	32
420	Particleâ€inâ€Cell/Monte Carlo Collisions Model for the Reactive Sputter Deposition of Nitride Layers. Plasma Processes and Polymers, 2009, 6, S784.	3.0	3
421	Study of the nucleation and growth of TiO2 and ZnO thin films by means of molecular dynamics simulations. Journal of Crystal Growth, 2009, 311, 4034-4043.	1.5	28
422	Hybrid Monte Carlo — Fluid model for studying the effects of nitrogen addition to argon glow discharges. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 126-140.	2.9	63
423	Effects of oxygen addition to argon glow discharges: A hybrid Monte Carlo-fluid modeling investigation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1266-1279.	2.9	61
424	Formation of endohedral Ni@C60 and exohedral Ni–C60 metallofullerene complexes by simulated ion implantation. Carbon, 2009, 47, 1028-1033.	10.3	22
425	Computer modelling of magnetron discharges. Journal Physics D: Applied Physics, 2009, 42, 194018.	2.8	54
426	Sputter-deposited Mg–Al–O thin films: linking molecular dynamics simulations to experiments. Journal Physics D: Applied Physics, 2009, 42, 065107.	2.8	40
427	Optimized Transport Setup for High Repetition Rate Pulse-Separated Analysis in Laser Ablationâ^'Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2009, 81, 4241-4248.	6.5	19
428	Numerical Study of the Size-Dependent Melting Mechanisms of Nickel Nanoclusters. Journal of Physical Chemistry C, 2009, 113, 2771-2776.	3.1	80
429	Plasma modelling and numerical simulation. Journal Physics D: Applied Physics, 2009, 42, 190301.	2.8	86
430	Reactive sputter deposition of TiN _{<i>x</i>} films, simulated with a particle-in-cell/Monte Carlo collisions model. New Journal of Physics, 2009, 11, 023039.	2.9	18
431	On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge. Journal Physics D: Applied Physics, 2009, 42, 122002.	2.8	28
432	Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2magnetron discharge used for the reactive sputter deposition of TiOxfilms. New Journal of Physics, 2009, 11, 103010.	2.9	29

#	Article	IF	CITATIONS
433	Numerical simulation of hydrocarbon plasmas for nanoparticle formation and the growth of nanostructured thin films. Plasma Physics and Controlled Fusion, 2009, 51, 124034.	2.1	2
434	Theoretical Characterization of an Atmospheric Pressure Glow Discharge Used for Analytical Spectrometry. Analytical Chemistry, 2009, 81, 9096-9108.	6.5	18
435	Modeling adatom surface processes during crystal growth: A new implementation of the Metropolis Monte Carlo algorithm. CrystEngComm, 2009, 11, 1597.	2.6	19
436	MODELING PECVD GROWTH OF NANOSTRUCTURED CARBON MATERIALS. High Temperature Material Processes, 2009, 13, 399-412.	0.6	1
437	Molecular Dynamics Simulations of the Sticking and Etch Behavior of Various Growth Species of (Ultra)Nanocrystalline Diamond Films. Chemical Vapor Deposition, 2008, 14, 213-223.	1.3	35
438	Study of Atmospheric MOCVD of TiO ₂ Thin Films by Means of Computational Fluid Dynamics Simulations. Chemical Vapor Deposition, 2008, 14, 339-346.	1.3	15
439	Design analysis of a laser ablation cell for inductively coupled plasma mass spectrometry by numerical simulation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 257-270.	2.9	34
440	Double pulse laser ablation and laser induced breakdown spectroscopy: A modeling investigation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 746-754.	2.9	73
441	Monte Carlo analysis of the electron thermalization process in the afterglow of a microsecond dc pulsed glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1274-1282.	2.9	9
442	Atomic Spectroscopy. Analytical Chemistry, 2008, 80, 4317-4347.	6.5	62
443	Modeling of the Magnetron Discharge. Springer Series in Materials Science, 2008, , 61-130.	0.6	8
444	Simulation of an Ar/Cl ₂ inductively coupled plasma: study of the effect of bias, power and pressure and comparison with experiments. Journal Physics D: Applied Physics, 2008, 41, 065207.	2.8	39
445	Calculation of gas heating in a dc sputter magnetron. Journal of Applied Physics, 2008, 104, .	2.5	30
446	Computer simulations of argon–hydrogen Grimm-type glow discharges. Journal of Analytical Atomic Spectrometry, 2008, 23, 1476.	3.0	27
447	On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a m dynamics investigation. Journal Physics D: Applied Physics, 2008, 41, 032006.	ioleçular 2.8	22
448	Modeling of a dielectric barrier discharge used as a flowing chemical reactor. Journal of Physics: Conference Series, 2008, 133, 012023.	0.4	5
449	New pathways for nanoparticle formation in acetylene dusty plasmas: a modelling investigation and comparison with experiments. Journal Physics D: Applied Physics, 2008, 41, 225201.	2.8	50
450	The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron. Journal of Applied Physics, 2008, 103, .	2.5	40

#	Article	IF	CITATIONS
451	The dominant role of impurities in the composition of high pressure noble gas plasmas. Applied Physics Letters, 2008, 92, .	3.3	151
452	The effect of the magnetic field strength on the sheath region of a dc magnetron discharge. Journal Physics D: Applied Physics, 2008, 41, 202007.	2.8	19
453	Reaction mechanisms and thin a-C:H film growth from low energy hydrocarbon radicals. Journal of Physics: Conference Series, 2007, 86, 012020.	0.4	19
454	Laser-induced plasmas from the ablation of metallic targets: The problem of the onset temperature, and insights on the expansion dynamics. Journal of Applied Physics, 2007, 101, 083301.	2.5	34
455	Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges. Journal of Analytical Atomic Spectrometry, 2007, 22, 13-40.	3.0	29
456	Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma. Journal of Analytical Atomic Spectrometry, 2007, 22, 1033.	3.0	20
457	The afterglow mystery of pulsed glow discharges and the role of dissociative electron–ion recombination. Journal of Analytical Atomic Spectrometry, 2007, 22, 502-512.	3.0	68
458	Molecular Dynamics Simulations of the Growth of Thin A :H Films Under Additional Ion Bombardment: Influence of the Growth Species and the Ar ⁺ Ion Kinetic Energy. Chemical Vapor Deposition, 2007, 13, 312-318.	1.3	19
459	Macroscale computer simulations to investigate the chemical vapor deposition of thin metal-oxide films. Surface and Coatings Technology, 2007, 201, 8838-8841.	4.8	5
460	Calculation of rate constants for asymmetric charge transfer, and their effect on relative sensitivity factors in glow discharge mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 325-336.	2.9	38
461	Computer simulations of a dielectric barrier discharge used for analytical spectrometry. Analytical and Bioanalytical Chemistry, 2007, 388, 1583-1594.	3.7	37
462	Computer simulations of sample chambers for laser ablation–inductively coupled plasma spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 155-168.	2.9	42
463	MODELING OF THE SYNTHESIS AND SUBSEQUENT GROWTH OF NANOPARTICLES IN DUSTY PLASMAS. High Temperature Material Processes, 2007, 11, 21-36.	0.6	0
464	Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges. Physical Review E, 2006, 73, 026405.	2.1	125
465	Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments. Journal of Analytical Atomic Spectrometry, 2006, 21, 384.	3.0	80
466	Multiple void formation in plasmas containing multispecies charged grains. Physical Review E, 2006, 74, 056401.	2.1	24
467	Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: A molecular dynamics study. Diamond and Related Materials, 2006, 15, 1663-1676.	3.9	18
468	Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated with computer simulations and experiments. Journal of Analytical Atomic Spectrometry, 2006, 21, 910.	3.0	44

#	Article	IF	CITATIONS
469	Effect of hydrogen on the growth of thin hydrogenated amorphous carbon films from thermal energy radicals. Applied Physics Letters, 2006, 88, 141922.	3.3	34
470	Temporal and spatially resolved laser-scattering plasma diagnostics for the characterization of a ms-pulsed glow discharge. Journal of Analytical Atomic Spectrometry, 2006, 21, 350.	3.0	19
471	Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis. Journal of Analytical Atomic Spectrometry, 2006, 21, 1161.	3.0	21
472	Influence of internal energy and impact angle on the sticking behaviour of reactive radicals in thin a-C:H film growth: a molecular dynamics study. Physical Chemistry Chemical Physics, 2006, 8, 2066.	2.8	9
473	Simulation of disk- and band-like voids in dusty plasma systems. Physics of Plasmas, 2006, 13, 052110.	1.9	21
474	Monte Carlo method for simulations of adsorbed atom diffusion on a surface. Diamond and Related Materials, 2006, 15, 1629-1635.	3.9	7
475	Negative ion behavior in single- and dual-frequency plasma etching reactors: Particle-in-cell/Monte Carlo collision study. Physical Review E, 2006, 73, 036402.	2.1	8
476	Atomic Spectroscopy. Analytical Chemistry, 2006, 78, 3917-3946.	6.5	137
477	Structure of multispecies charged particles in a quadratic trap. Physical Review E, 2006, 73, 047402.	2.1	25
478	Detailed numerical investigation of a DC sputter magnetron. IEEE Transactions on Plasma Science, 2006, 34, 886-894.	1.3	32
479	Phase explosion in atmospheric pressure infrared laser ablation from water-rich targets. Applied Physics Letters, 2006, 89, 041503.	3.3	27
480	Colloquium Spectroscopicum Internationale XXXIV, Antwerp, Belgium, 4–9 September 2005. Talanta, 2006, 70, 907-908.	5.5	0
481	Computer Simulations for Processing Plasmas. Plasma Processes and Polymers, 2006, 3, 110-119.	3.0	13
482	PIC – MCC Numerical Simulation of a DC Planar Magnetron. Plasma Processes and Polymers, 2006, 3, 127-134.	3.0	34
483	Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-sampling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 421-432.	2.9	58
484	Plasma characteristics of an Ar/CF4/N2discharge in an asymmetric dual frequency reactor: numerical investigation by a PIC/MC model. Plasma Sources Science and Technology, 2006, 15, 368-377.	3.1	38
485	Colloquium Spectroscopicum Internationale XXXIV Antwerp (Belgium), 4–9 September 2005. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 373-374.	2.9	2
486	The effect of hydrogen on the electronic and bonding properties of amorphous carbon. Journal of Physics Condensed Matter, 2006, 18, 10803-10815.	1.8	16

#	Article	IF	CITATIONS
487	Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges. New Journal of Physics, 2006, 8, 178-178.	2.9	38
488	Aromatic ring generation as a dust precursor in acetylene discharges. Applied Physics Letters, 2006, 88, 151501.	3.3	24
489	Effect of ambient pressure on laser ablation and plume expansion dynamics: A numerical simulation. Journal of Applied Physics, 2006, 99, 063304.	2.5	46
490	Unraveling the deposition mechanism in a-C:H thin-film growth: A molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces. Journal of Applied Physics, 2006, 99, 014902.	2.5	24
491	Densification of thin a-C : H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study. Journal Physics D: Applied Physics, 2006, 39, 1948-1953.	2.8	3
492	Molecular dynamics simulation of the impact behaviour of various hydrocarbon species on DLC. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 315-318.	1.4	25
493	Modeling of gas discharge plasmas: What can we learn from it?. Surface and Coatings Technology, 2005, 200, 62-67.	4.8	15
494	Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1280-1307.	2.9	220
495	Nanoparticle growth and transport mechanisms in capacitively coupled silane discharges: a numerical investigation. AIP Conference Proceedings, 2005, , .	0.4	Ο
496	Hollow cathode discharges with gas flow: numerical modelling for the effect on the sputtered atoms and the deposition flux. Plasma Sources Science and Technology, 2005, 14, 191-200.	3.1	10
497	Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas. Physical Review E, 2005, 71, 066405.	2.1	35
498	Particle-in-cell Monte Carlo modeling of Langmuir probes in an Ar plasma. Journal of Applied Physics, 2005, 97, 123310.	2.5	20
499	Study of the sputtered Cu atoms and Cu+ ions in a hollow cathode glow discharge using a hybrid model. Journal of Applied Physics, 2005, 98, 033303.	2.5	23
500	Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons. Physical Review E, 2005, 72, 056402.	2.1	38
501	Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements. Journal of Applied Physics, 2005, 97, 123305.	2.5	45
502	Numerical simulation of dual frequency etching reactors: Influence of the external process parameters on the plasma characteristics. Journal of Applied Physics, 2005, 98, 023308.	2.5	88
503	Laser ablation of Cu and plume expansion into 1atm ambient gas. Journal of Applied Physics, 2005, 97, 063305.	2.5	162
504	Numerical modeling for a better understanding of gas discharge plasmas. High Temperature Material Processes, 2005, 9, 321-344.	0.6	1

Annemie Bogaerts

#	Article	IF	CITATIONS
505	Terahertz radiation from oscillating electrons in laser-induced wake fields. Physical Review E, 2004, 70, 046408.	2.1	8
506	Incorporating the gas flow in a numerical model of rf discharges in methane. Journal of Applied Physics, 2004, 96, 3070-3076.	2.5	14
507	Modeling of the target surface modification by reactive ion implantation during magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1524-1529.	2.1	16
508	Investigation of Growth Mechanisms of Clusters in a Silane Discharge With the Use of a Fluid Model. IEEE Transactions on Plasma Science, 2004, 32, 691-698.	1.3	33
509	Numerical Models of the Planar Magnetron Glow Discharges. Contributions To Plasma Physics, 2004, 44, 582-588.	1.1	30
510	Fundamental studies on a planar-cathode direct current glow discharge. Part II: numerical modeling and comparison with laser scattering experiments. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 449-460.	2.9	25
511	Fundamental studies on a planar-cathode direct current glow discharge. Part I: characterization via laser scattering techniques. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 435-447.	2.9	26
512	Computer simulations of crater profiles in glow discharge optical emission spectrometry: comparison with experiments and investigation of the underlying mechanisms. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1403-1411.	2.9	19
513	Calculation of cathode heating in analytical glow discharges. Journal of Analytical Atomic Spectrometry, 2004, 19, 1206.	3.0	22
514	Nanosecond laser ablation of Cu: modeling of the expansion in He background gas, and comparison with expansion in vacuum. Journal of Analytical Atomic Spectrometry, 2004, 19, 1169-1176.	3.0	48
515	Fundamental studies on a planar-cathode direct current glow discharge. Part II: numerical modeling and comparison with laser scattering experiments. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, , .	2.9	0
516	Modeling of the formation and transport of nanoparticles in silane plasmas. Physical Review E, 2004, 70, 056407.	2.1	29
517	Numerical investigation of particle formation mechanisms in silane discharges. Physical Review E, 2004, 69, 056409.	2.1	85
518	Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species. Diamond and Related Materials, 2004, 13, 1873-1881.	3.9	56
519	Numerical investigation of ion-energy-distribution functions in single and dual frequency capacitively coupled plasma reactors. Physical Review E, 2004, 69, 026406.	2.1	115
520	Atomic Spectroscopy. Analytical Chemistry, 2004, 76, 3313-3336.	6.5	32
521	Effect of helium/argon gas ratio in a He-Ar-Cu + IR hollow-cathode discharge laser: modeling study and comparison with experiments. Applied Physics B: Lasers and Optics, 2003, 76, 299-306.	2.2	6
522	PIC-MC simulation of an RF capacitively coupled Ar/H2 discharge. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 300-304.	1.4	12

#	Article	IF	CITATIONS
523	Dynamic Monte Carlo simulation for reactive sputtering of aluminium. Nuclear Instruments & Methods in Physics Research B, 2003, 207, 415-423.	1.4	23
524	Laser ablation for analytical sampling: what can we learn from modeling?. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2003, 58, 1867-1893.	2.9	395
525	Clow discharge modelling: from basic understanding towards applications. Surface and Interface Analysis, 2003, 35, 593-603.	1.8	19
526	Role of the fast Ar atoms, Ar+ ions, and metastable Ar atoms in a hollow cathode glow discharge: Study by a hybrid model. Journal of Applied Physics, 2003, 94, 2212-2222.	2.5	28
527	Glow discharge optical emission spectrometry: moving towards reliable thin film analysis–a short review. Journal of Analytical Atomic Spectrometry, 2003, 18, 670-679.	3.0	89
528	Hollow cathode glow discharge in He: Monte Carlo–Fluid model combined with a transport model for the metastable atoms. Journal of Applied Physics, 2003, 93, 47-55.	2.5	27
529	A one-dimensional fluid model for an acetylene RF discharge: a study of the plasma chemistry. IEEE Transactions on Plasma Science, 2003, 31, 659-664.	1.3	32
530	Particle-in-cell/Monte Carlo simulations of a low-pressure capacitively coupled radio-frequency discharge: Effect of adding H2 to an Ar discharge. Journal of Applied Physics, 2003, 93, 5025-5033.	2.5	18
531	Numerical study of Ar/CF4/N2 discharges in single- and dual-frequency capacitively coupled plasma reactors. Journal of Applied Physics, 2003, 94, 3748-3756.	2.5	99
532	Particle-in-cell/Monte Carlo simulation of a capacitively coupled radio frequency Ar/CF4 discharge: Effect of gas composition. Journal of Applied Physics, 2003, 93, 2369-2379.	2.5	77
533	Modeling of a millisecond pulsed glow discharge: Investigation of the afterpeak. Journal of Analytical Atomic Spectrometry, 2003, 18, 533.	3.0	49
534	One-dimensional modelling of a capacitively coupled rf plasma in silane/helium, including small concentrations of O2and N2. Journal Physics D: Applied Physics, 2003, 36, 1826-1833.	2.8	31
535	Investigation of Laser Output Power Saturation in the HeCu+ IR Hollow Cathode Discharge Laser by Experiments and Numerical Modeling. Physica Scripta, 2003, T105, 90.	2.5	2
536	Comparison of a one-dimensional particle-in-cell–Monte Carlo model and a one-dimensional fluid model for a CH[sub 4]/H[sub 2] capacitively coupled radio frequency discharge. Journal of Applied Physics, 2002, 91, 6296.	2.5	35
537	Hybrid modeling network for a helium–argon–copper hollow cathode discharge used for laser applications. Journal of Applied Physics, 2002, 92, 6408-6422.	2.5	27
538	Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo–fluid model. Physical Review E, 2002, 65, 056402.	2.1	34
539	Modeling of a capacitively coupled radio-frequency methane plasma: Comparison between a one-dimensional and a two-dimensional fluid model. Journal of Applied Physics, 2002, 92, 2290-2295.	2.5	27
540	The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces. Plasma Sources Science and Technology, 2002, 11, 27-36.	3.1	64

#	Article	IF	CITATIONS
541	Atomic Spectroscopy. Analytical Chemistry, 2002, 74, 2691-2712.	6.5	25
542	Hydrogen addition to an argon glow discharge: a numerical simulation. Journal of Analytical Atomic Spectrometry, 2002, 17, 768-779.	3.0	47
543	Electron anisotropic scattering in gases: A formula for Monte Carlo simulations. Physical Review E, 2002, 65, 037402.	2.1	95
544	Calculation of the gas flow and its effect on the plasma characteristics for a modified Grimm-type glow discharge cell. Journal of Analytical Atomic Spectrometry, 2002, 17, 1076-1082.	3.0	38
545	Evolution of charged particle densities after laser-induced photodetachment in a strongly electronegative RF discharge. IEEE Transactions on Plasma Science, 2002, 30, 132-133.	1.3	0
546	Comment on ÂIntegral cross sections for electron impact excitation of electronic states of N2Â. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 5163-5166.	1.5	2
547	Axial non-uniformity of longitudinal hollow-cathode discharges for laser applications: numerical modeling and comparison with experiments. Applied Physics B: Lasers and Optics, 2002, 75, 731-738.	2.2	7
548	Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 109-119.	2.9	20
549	Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 311-326.	2.9	37
550	Cas discharge plasmas and their applications. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 609-658.	2.9	822
551	Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1071-1099.	2.9	77
552	Numerical modelling of gas discharge plasmas for various applications. Vacuum, 2002, 69, 37-52.	3.5	25
553	Can plasma spectrochemistry assist in improving the accuracy of chemical analysis?. Analytica Chimica Acta, 2002, 456, 63-75.	5.4	9
554	One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers. Journal of Applied Physics, 2001, 90, 570-579.	2.5	110
555	Improved hybrid Monte Carlo–fluid model for the electrical characteristics in an analytical radio-frequency glow discharge in argon. Journal of Analytical Atomic Spectrometry, 2001, 16, 750-755.	3.0	13
556	Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions. Journal of Analytical Atomic Spectrometry, 2001, 16, 239-249.	3.0	35
557	Comparison of modeling calculations with experimental results for direct current glow discharge optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 551-564.	2.9	17
558	Local and fast relaxation phenomena after laser-induced photodetachment in a strongly electronegative rf discharge. Physical Review E, 2001, 65, 016408.	2.1	5

#	Article	IF	CITATIONS
559	Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegativeSiH4discharge. Physical Review E, 2001, 63, 026405.	2.1	4
560	Modeling network for argon glow discharges: The output cannot be better than the input. AIP Conference Proceedings, 2000, , .	0.4	1
561	Behavior of the sputtered copper atoms, ions and excited species in a radio-frequency and direct current glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 279-297.	2.9	20
562	Description of the argon-excited levels in a radio-frequency and direct current glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 263-278.	2.9	25
563	Comparison of calculated and measured optical emission intensities in a direct current argon–copper glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1465-1479.	2.9	35
564	Calculation of gas heating in direct current argon glow discharges. Journal of Applied Physics, 2000, 87, 8334-8344.	2.5	89
565	Electron energy distribution function in capacitively coupled RF discharges: difference between electropositive Ar and electronegative SiH4discharges. Plasma Sources Science and Technology, 2000, 9, 583-591.	3.1	29
566	Spatial behavior of energy relaxation of electrons in capacitively coupled discharges: Comparison between Ar and SiH4. Journal of Applied Physics, 2000, 87, 3628-3636.	2.5	26
567	Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation. Journal of Analytical Atomic Spectrometry, 2000, 15, 1191-1201.	3.0	31
568	Hybrid Monte Carlo—fluid model for a microsecond pulsed glow discharge. Journal of Analytical Atomic Spectrometry, 2000, 15, 895-905.	3.0	26
569	Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations. Journal of Analytical Atomic Spectrometry, 2000, 15, 441-449.	3.0	82
570	Glow Discharge Mass Spectrometry, Methods. , 1999, , 669-676.		4
571	Comparison between a radio-frequency and direct current glow discharge in argon by a hybrid Monte Carlo–fluid model for electrons, argon ions and fast argon atoms. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 1335-1350.	2.9	12
572	Role of Ar2+ and Ar2+ ions in a direct current argon glow discharge: A numerical description. Journal of Applied Physics, 1999, 86, 4124-4133.	2.5	77
573	Comprehensive modelling network for dc glow discharges in argon. Plasma Sources Science and Technology, 1999, 8, 210-229.	3.1	33
574	New developments and applications in GDMS. Fresenius' Journal of Analytical Chemistry, 1999, 364, 367-375.	1.5	27
575	Semianalytical description of nonlocal secondary electrons in a radio frequency capacitively coupled plasma at intermediate pressures. IEEE Transactions on Plasma Science, 1999, 27, 1339-1347.	1.3	8
576	Monte Carlo model for the argon ions and fast argon atoms in a radio-frequency discharge. IEEE Transactions on Plasma Science, 1999, 27, 1406-1415.	1.3	17

#	Article	IF	CITATIONS
577	Modeling of ionization of argon in an analytical capacitively coupled radio-frequency glow discharge. Journal of Applied Physics, 1999, 86, 2990-3001.	2.5	24
578	The glow discharge: an exciting plasma!. Journal of Analytical Atomic Spectrometry, 1999, 14, 1375-1384.	3.0	44
579	Hybrid Modeling of a Capacitively Coupled Radio Frequency Glow Discharge in Argon: Combined Monte Carlo and Fluid Model. Japanese Journal of Applied Physics, 1999, 38, 4404-4415.	1.5	52
580	Collisional-radiative model for an argon glow discharge. Journal of Applied Physics, 1998, 84, 121-136.	2.5	223
581	Fundamental aspects and applications of glow discharge spectrometric techniques. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 1-42.	2.9	69
582	Comprehensive description of a Grimm-type glow discharge source used for optical emission spectrometry: A mathematical simulation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 437-462.	2.9	45
583	Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 1517-1526.	2.9	50
584	Collisional–radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 1679-1703.	2.9	100
585	Argon and copper optical emission spectra in a Grimm glow discharge source: mathematical simulations and comparison with experiment. Journal of Analytical Atomic Spectrometry, 1998, 13, 721-726.	3.0	23
586	Modeling of argon direct current glow discharges and comparison with experiment: how good is the agreement?. Journal of Analytical Atomic Spectrometry, 1998, 13, 945-953.	3.0	24
587	Influence of sticking coefficients on the behavior of sputtered atoms in an argon glow discharge: Modeling and comparison with experiment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2400-2410.	2.1	17
588	Computer Simulation of an Analytical Direct Current Glow Discharge in Argon: Influence of the Cell Dimensions on the Plasma Quantities. Journal of Analytical Atomic Spectrometry, 1997, 12, 751-759.	3.0	21
589	Peer Reviewed: Modeling Glow Discharges: What Can We Learn From It?. Analytical Chemistry, 1997, 69, 719A-727A.	6.5	18
590	Three-dimensional density profiles of sputtered atoms and ions in a direct current glow discharge: experimental study and comparison with calculations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 205-218.	2.9	41
591	Three-dimensional density profiles of argon metastable atoms in a direct current glow discharge: experimental study and comparison with calculations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 219-229.	2.9	41
592	Calculation of crater profiles on a flat cathode in a direct current glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 765-777.	2.9	46
593	Recent trends in solid mass spectrometry: GDMS and other methods. Fresenius' Journal of Analytical Chemistry, 1997, 359, 326-330.	1.5	10
594	Three-dimensional modeling of a direct current glow discharge in argon: is it better than one-dimensional modeling?. Fresenius' Journal of Analytical Chemistry, 1997, 359, 331-337.	1.5	10

#	Article	IF	CITATIONS
595	Modeling of glow discharge sources with flat and pin cathodes and implications for mass spectrometric analysis. Journal of the American Society for Mass Spectrometry, 1997, 8, 1021-1029.	2.8	16
596	Comparison of argon and neon as discharge gases in a direct-current glow discharge a mathematical simulation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 553-565.	2.9	27
597	Calculation of crater profiles on a flat cathode in a direct current glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 765-777.	2.9	0
598	Two-Dimensional Model of a Direct Current Glow Discharge:Â Description of the Electrons, Argon Ions, and Fast Argon Atoms. Analytical Chemistry, 1996, 68, 2296-2303.	6.5	77
599	Two-Dimensional Model of a Direct Current Glow Discharge:Â Description of the Argon Metastable Atoms, Sputtered Atoms, and Ions. Analytical Chemistry, 1996, 68, 2676-2685.	6.5	62
600	Relative sensitivity factors in glow discharge mass spectrometry: the role of charge transfer ionization. Journal of Analytical Atomic Spectrometry, 1996, 11, 841.	3.0	48
601	Role of sputtered Cu atoms and ions in a direct current glow discharge: Combined fluid and Monte Carlo model. Journal of Applied Physics, 1996, 79, 1279-1286.	2.5	83
602	Mathematical description of a direct current glow discharge in argon. Analytical and Bioanalytical Chemistry, 1996, 355, 853-857.	3.7	14
603	Monte Carlo simulation of an analytical glow discharge: motion of electrons, ions and fast neutrals in the cathode dark space. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 179-196.	2.9	95
604	Experimental determination of the energy distribution of ions bombarding the cathode surface in a glow discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 583-605.	2.9	22
605	Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: Langmuir probe and optical emission spectrometry measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 1337-1349.	2.9	50
606	Modeling of metastable argon atoms in a direct-current glow discharge. Physical Review A, 1995, 52, 3743-3751.	2.5	152
607	The role of fast argon ions and atoms in the ionization of argon in a directâ€current glow discharge: A mathematical simulation. Journal of Applied Physics, 1995, 78, 6427-6431.	2.5	71
608	Hybrid Monte Carloâ€fluid model of a direct current glow discharge. Journal of Applied Physics, 1995, 78, 2233-2241.	2.5	133
609	Description of the thermalization process of the sputtered atoms in a glow discharge using a threeâ€dimensional Monte Carlo method. Journal of Applied Physics, 1995, 77, 1868-1874.	2.5	95
610	Numerical Modeling of Analytical Glow Discharges. , 0, , 155-205.		2
611	Analysis of Nonconducting Materials by dc Glow Discharge Spectrometry. , 0, , 293-315.		1
612	Computer Simulations of Laser Ablation, Plume Expansion and Plasma Formation. Advanced Materials Research, 0, 227, 1-10.	0.3	9

#	Article	IF	CITATIONS
613	Chemical Detection of Short-Lived Species Induced in Aqueous Media by Atmospheric Pressure Plasma. , 0, , .		3