John M Ashton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2334894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered TGFB1 regulated pathways promote accelerated tendon healing in the superhealer MRL/MpJ mouse. Scientific Reports, 2022, 12, 3026.	3.3	7
2	Platelet olfactory receptor activation limits platelet reactivity and growth of aortic aneurysms. Journal of Clinical Investigation, 2022, 132, .	8.2	18
3	Characterizing Neonatal Heart Maturation, Regeneration, and Scar Resolution Using Spatial Transcriptomics. Journal of Cardiovascular Development and Disease, 2022, 9, 1.	1.6	12
4	Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors <i>In Vivo</i> . Journal of Medicinal Chemistry, 2022, 65, 6039-6055.	6.4	3
5	PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. Journal of Experimental Medicine, 2021, 218, .	8.5	49
6	Prevention of Fibrosis and Pathological Cardiac Remodeling by Salinomycin. Circulation Research, 2021, 128, 1663-1678.	4.5	16
7	Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Science Advances, 2021, 7, .	10.3	56
8	Coordination of endothelial cell positioning and fate specification by the epicardium. Nature Communications, 2021, 12, 4155.	12.8	22
9	Interleukin-1/Toll-like Receptor Inhibition Can Restore the Disrupted Bone Marrow Microenvironment in Mouse Model of Myelodysplastic Syndromes. Blood, 2021, 138, 1510-1510.	1.4	2
10	Comparative Analysis of Single-Cell RNA Sequencing Platforms and Methods. Journal of Biomolecular Techniques, 2021, 32, 3fc1f5fe.3eccea01.	1.5	5
11	A novel in vitro model of primary human pediatric lung epithelial cells. Pediatric Research, 2020, 87, 511-517.	2.3	21
12	Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica, 2020, 105, 585-597.	3.5	32
13	Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 536-551.	9.4	252
14	A Review of the Scientific Rigor, Reproducibility, and Transparency Studies Conducted by the ABRF Research Groups. Journal of Biomolecular Techniques, 2020, 31, 11-26.	1.5	15
15	Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Advances, 2019, 3, 1011-1026.	5.2	23
16	The Hematopoietic Oxidase NOX2 Regulates Self-Renewal of Leukemic Stem Cells. Cell Reports, 2019, 27, 238-254.e6.	6.4	65
17	ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut, 2019, 68, 1245-1258.	12.1	58
18	Identification and Characterization of Cellular Heterogeneity within Human Late Developmental Stage Dissociated Lung by CITE‣eq. FASEB Journal, 2019, 33, 847.5.	0.5	4

Јони М Азнтои

#	Article	IF	CITATIONS
19	Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight, 2019, 4, .	5.0	82
20	Developmental Plasticity of Acute Myeloid Leukemia Mediates Resistance to Venetoclax-Based Therapy. Blood, 2019, 134, 185-185.	1.4	2
21	A Specific Mesenchymal Stem and Progenitor Cell (MSPC) Subpopulation with a Multi-Potent Gene Signature Is Transcriptionally Altered in the Setting of Myelodysplastic Syndrome (MDS) in Primary Human Bone Marrow Aspirates. Blood, 2019, 134, 1708-1708.	1.4	1
22	Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex. Brain, Behavior, and Immunity, 2018, 67, 257-278.	4.1	20
23	Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight, 2018, 3, .	5.0	166
24	Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Scientific Reports, 2018, 8, 13455.	3.3	31
25	Dissociation, cellular isolation, and initial molecular characterization of neonatal and pediatric human lung tissues. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L576-L583.	2.9	36
26	AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell, 2018, 23, 86-100.e6.	11.1	189
27	Rheumatoid Arthritis Causes Hematopoietic Stem Cell Reprogramming to Maintain Functionality. Blood, 2018, 132, 2573-2573.	1.4	1
28	Role of RasGRP3 in EPO/EPOR Signaling and Transmigration of Human Hematopoietic CD34+ Cells. Blood, 2018, 132, 4531-4531.	1.4	0
29	Dwjm-Adherence Induces Chemotherapy Resistance in Primary Acute Myeloid Leukemia By Altering Leukemia Cell Metabolism. Blood, 2018, 132, 3953-3953.	1.4	0
30	Tudor-SN–mediated endonucleolytic decay of human cell microRNAs promotes G ₁ /S phase transition. Science, 2017, 356, 859-862.	12.6	77
31	Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica, 2017, 102, 1054-1065.	3.5	16
32	Index case of acute myeloid leukemia in a family harboring a novel CEBPA germ line mutation. Blood Advances, 2017, 1, 500-503.	5.2	9
33	Aging of Hematopoietic Stem Cells Is Driven By Regional Specialization of Marrow Macrophages. Blood, 2017, 130, 95-95.	1.4	0
34	Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell, 2016, 19, 23-37.	11.1	397
35	Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood, 2016, 128, 1671-1678.	1.4	179
36	Residual Disease in a Novel Xenograft Model of RUNX1-Mutated, Cytogenetically Normal Acute Myeloid Leukemia. PLoS ONE, 2015, 10, e0132375.	2.5	1

Јони М Азнтои

#	Article	IF	CITATIONS
37	A Role for IL1RAP in Acute Myelogenous Leukemia Stem Cells Following Treatment and Progression. Blood, 2015, 126, 4266-4266.	1.4	1
38	Distinct Properties of Leukemia Stem Cells in Primary Refractory Acute Myeloid Leukemia. Blood, 2015, 126, 685-685.	1.4	1
39	Adipose Tissue Functions As a Reservoir for Leukemia Stem Cells and Confers Chemo-Resistance. Blood, 2015, 126, 845-845.	1.4	1
40	Leukemia Cells Resident in Adipose Tissue Display a Pro-Inflammatory Phenotype and Induce Lipolysis and Atrophy of Adipose Tissue. Blood, 2015, 126, 2765-2765.	1.4	1
41	A Novel Xenograft Model of Cytogenetically Normal Acute Myeloid Leukemia Harboring RUNX1 and ASXL1 Mutations Demonstrates Residual Disease after Anthracycline/Cytarabine-Based Chemotherapy. Blood, 2014, 124, 9-9.	1.4	5
42	Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells. Journal of Biological Chemistry, 2013, 288, 33542-33558.	3.4	163
43	Gene Sets Identified with Oncogene Cooperativity Analysis Regulate InÂVivo Growth and Survival of Leukemia Stem Cells. Cell Stem Cell, 2012, 11, 359-372.	11.1	59
44	Functional Inhibition of Osteoblastic Cells in An In Vivo Mouse Model of Myeloid Leukemia. Blood, 2011, 118, 243-243.	1.4	3
45	Microenvironmental Changes In An In Vivo Model of Myeloid Leukemia Negatively Regulate Osteoblastic Cells Blood, 2010, 116, 1219-1219.	1.4	0
46	Synergistically Regulated Genes and Pathways in Leukemias Induced by Co-Expression of BCR-ABL and Nup98-HoxA9 Blood, 2009, 114, 3473-3473.	1.4	4
47	Reciprocal Synergistic Interactions of Leukemic Cells with Osteoclast Progenitors in the Bone Microenvironment. Blood, 2008, 112, 322-322.	1.4	1
48	Genes Dysregulated in a Murine Model of Leukemogenesis Comprise a Signature for Identification of Therapeutics in Humans Blood, 2008, 112, 3349-3349.	1.4	0