
Dan Eduard Mihaiescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2333831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Administration Routes as Modulators of the Intrahepatic Distribution and Anti-Anemic Activity of Salicylic Acid/Fe3O4 Nanoparticles. Biomedicines, 2022, 10, 1213.	3.2	0
2	Generalized Analytical Model for Enzymatic BioFET Transistors. Biosensors, 2022, 12, 474.	4.7	5
3	Multifaced Role of Dual Herbal Principles Loaded-Lipid Nanocarriers in Providing High Therapeutic Efficacity. Pharmaceutics, 2021, 13, 1511.	4.5	6
4	Phenotypic Switching of B16F10 Melanoma Cells as a Stress Adaptation Response to Fe3O4/Salicylic Acid Nanoparticle Therapy. Pharmaceuticals, 2021, 14, 1007.	3.8	5
5	Microwave-Assisted Sol–Gel Preparation of the Nanostructured Magnetic System for Solid-Phase Synthesis. Nanomaterials, 2021, 11, 3176.	4.1	8
6	Sulpho-Salicylic Acid Grafted to Ferrite Nanoparticles for n-Type Organic Semiconductors. Nanomaterials, 2020, 10, 1787.	4.1	4
7	Iron Oxide/Salicylic Acid Nanoparticles as Potential Therapy for B16F10 Melanoma Transplanted on the Chick Chorioallantoic Membrane. Processes, 2020, 8, 706.	2.8	8
8	Solution for green organic thin film transistors: Fe3O4 nano-core with PABA external shell as p-type film. Journal of Materials Science: Materials in Electronics, 2020, 31, 3063-3073.	2.2	7
9	PV Microgrids Efficiency: From Nanomaterials and Semiconductor Polymer TechnologiesÂfor PV Cells to Global MPPT Control for PV Arrays. Power Systems, 2020, , 289-325.	0.5	1
10	Simulation and Experimental Studies about Proper Electrodes of an Organic Thin Film Transistor. , 2019, , .		1
11	Functionalized silica shell magnetic nanoparticles for nanophase peptide synthesis applications. Microporous and Mesoporous Materials, 2019, 286, 45-56.	4.4	5
12	Bionanocomposites based of polylactic acid and silver nanoparticles obtained by solvent evaporation for potential use as biomaterials. , 2019, , .		0
13	Experimental Characteristics of Organic Transistor with Silver Gate. , 2019, , .		0
14	Application of the Nonlinear Electrical Conduction Theorem to Emphasize the Optimized Biosensor Sensitivity. , 2019, , .		1
15	Design of the Technological Flow to Produce a Planar Variant of the Nothing on Insulator Device and its Tunneling Conduction. Journal of Nano Research, 2019, 60, 33-41.	0.8	1
16	Organic Compounds Integrated on Nanostructured Materials for Biomedical Applications. Lecture Notes in Networks and Systems, 2019, , 489-497.	0.7	1
17	Synthesis and Characterization of a Core-shell Material Using YBa2Cu3O7-d and Cobalt Ferrite Nanoparticles. Revista De Chimie (discontinued), 2019, 69, 3345-3348.	0.4	0
18	Technology of fabrication and functional validations of planar-Nothing On Insulator devices with		2

oxide instead vacuum. , 2018, , .

#	Article	IF	CITATIONS
19	Application of FT-IR Classification Method in Silica-Plant Extracts Composites Quality Testing. IOP Conference Series: Materials Science and Engineering, 2018, 374, 012064.	0.6	Ο
20	A Nothing on Insulator - NOI - Nanotransistor Configuration Suitable for the Zaidman Model. , 2018, , .		1
21	Vertical variants of PIN and p-NOI tunnel electronic devices and potential applications. , 2017, , .		5
22	Static and Dynamic Aspects of Different Tunneling NOI Nanotransistors with Oxide and Vacuum. , 2017, , \cdot		1
23	Magnetic nanoparticles-based therapy for malignant mesothelioma. Romanian Journal of Morphology and Embryology, 2017, 58, 457-463.	0.8	2
24	NRET — A rapid method to investigate the water–oil interface in reverse micellar systems. Journal of Molecular Liquids, 2016, 214, 283-292.	4.9	3
25	High temperature superconducting materials based on Graphene / YBCO nanocomposite. Materials Today: Proceedings, 2016, 3, 2628-2634.	1.8	4
26	Fe3O4/salicylic acid nanoparticles versatility in magnetic mediated vascular nanoblockage. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	12
27	Antitumoral materials with regenerative function obtained using a layer-by-layer technique. Drug Design, Development and Therapy, 2015, 9, 1269.	4.3	13
28	Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties. Biofabrication, 2015, 7, 015014.	7.1	25
29	Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE. Applied Surface Science, 2015, 336, 234-239.	6.1	9
30	Functionalized magnetic nanoparticles for biomedical applications. Current Pharmaceutical Design, 2015, 21, 6038-6054.	1.9	17
31	SYNTHESIS AND BIOEVALUATION OF MAGNETIC PARTICLES BASED ON CHITOSAN AND PHYTOCOMPONENTS FROM Eugenia carryophyllata AQUEOUS EXTRACT. Environmental Engineering and Management Journal, 2015, 14, 855-861.	0.6	0
32	Biocompatible hydrodispersible magnetite nanoparticles used as antibiotic drug carriers. Romanian Journal of Morphology and Embryology, 2015, 56, 365-70.	0.8	7
33	In vitro and in vivo applications of 3D dendritic gold nanostructures. Romanian Journal of Morphology and Embryology, 2015, 56, 915-24.	0.8	3
34	Efficiency of gentamicin loaded in bacterial polysaccharides microcapsules against intracellular Gram-positive and Gram-negative invasive pathogens. Romanian Journal of Morphology and Embryology, 2015, 56, 1417-21.	0.8	2
35	Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	15
36	Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication, 2013, 5, 015007.	7.1	36

#	Article	IF	CITATIONS
37	Biocompatible Magnetic Hollow Silica Microspheres for Drug Delivery. Current Organic Chemistry, 2013, 17, 1029-1033.	1.6	17
38	Prosthetic Devices with Functionalized Anti-biofilm Surface Based NanoAg@C18. Current Organic Chemistry, 2013, 17, 105-112.	1.6	4
39	Magnetic Nanoparticles for Controlling in vitro Fungal Biofilms. Current Organic Chemistry, 2013, 17, 1023-1028.	1.6	9
40	Influence of hybrid inorganic/organic mesoporous and nanostructured materials on the cephalosporins' efficacy on different bacterial strains. IET Nanobiotechnology, 2012, 6, 156-161.	3.8	5
41	Improved antibacterial activity of cephalosporins loaded in magnetic chitosan microspheres. International Journal of Pharmaceutics, 2012, 436, 201-205.	5.2	47
42	Synthesis, characterization and in vitro assessment of the magnetic chitosan–carboxymethylcellulose biocomposite interactions with the prokaryotic and eukaryotic cells. International Journal of Pharmaceutics, 2012, 436, 771-777.	5.2	53
43	Hybrid Nanomaterial for Stabilizing the Antibiofilm Activity of Eugenia carryophyllata Essential Oil. IEEE Transactions on Nanobioscience, 2012, 11, 360-365.	3.3	36
44	Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays. Applied Surface Science, 2012, 258, 9250-9255.	6.1	21
45	Inhibitory Activity of \${m Fe}_{3} {m O}_{4}\$/Oleic Acid/Usnic Acid—Core/Shell/Extra-Shell Nanofluid on S. aureus Biofilm Development. IEEE Transactions on Nanobioscience, 2011, 10, 269-274.	3.3	53
46	Influence of magnetic MWCNTs on the antimicrobial activity of cephalosporins. Biointerface Research in Applied Chemistry, 2011, 1, 139-144.	1.0	5
47	Magnetic chitosan for drug targeting and in vitro drug delivery response. Biointerface Research in Applied Chemistry, 2011, 1, 160-165.	1.0	27
48	Magnetic scaffold for drug targeting: evaluation of cephalosporins controlled release profile. Biointerface Research in Applied Chemistry, 2011, 1, 191-195.	1.0	13
49	Hybrid materials for drug delivery of rifampicin: evaluation of release profile. Biointerface Research in Applied Chemistry, 2011, 1, 229-235.	1.0	11
50	Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2009, 255, 9873-9876.	6.1	10
51	Functionalized polyvinyl alcohol derivatives thin films for controlled drug release and targeting systems: MAPLE deposition and morphological, chemical and in vitro characterization. Applied Surface Science, 2009, 255, 5600-5604.	6.1	21
52	Laser processing of polyethylene glycol derivative and block copolymer thin films. Applied Surface Science, 2009, 255, 5605-5610.	6.1	11
53	Thin films growth parameters in MAPLE; application to fibrinogen. Journal of Physics: Conference Series, 2007, 59, 22-27.	0.4	7
54	Matrix assisted pulsed laser evaporation of pullulan tailor-made biomaterial thin films for controlled drug delivery systems. Journal of Physics: Conference Series, 2007, 59, 144-149.	0.4	8

#	Article	IF	CITATIONS
55	Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2007, 253, 6476-6479.	6.1	34
56	Matrix assisted pulsed laser evaporation of poly(d,l-lactide) thin films for controlled-release drug systems. Applied Surface Science, 2007, 253, 7702-7706.	6.1	14
57	Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Applied Surface Science, 2007, 253, 7755-7760.	6.1	16
58	Synthesis and characterization of PAni–SiO2 and PTh–SiO2 nanocomposites' thin films by plasma polymerization. Progress in Solid State Chemistry, 2006, 34, 191-199.	7.2	36
59	Laser deposition of cryoglobulin blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2006, 252, 4652-4655.	6.1	15
60	Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Applied Surface Science, 2006, 252, 4647-4651.	6.1	31
61	Inorganic copolymers based on silanes and ferrocene monomers, precursors for advanced nanostructured ceramics. Composites Science and Technology, 2005, 65, 713-717.	7.8	10
62	Processing of mussel adhesive protein analog thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 247, 217-224.	6.1	22
63	Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 422-427.	6.1	48
64	Plasma polymerized ferocenne–pyrrole copolymer films. Composites Part A: Applied Science and Manufacturing, 2005, 36, 503-507.	7.6	5
65	Pulsed laser deposition of biocompatible polymers: a comparative study in case of pullulan. Thin Solid Films, 2004, 453-454, 262-268.	1.8	36
66	Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation. Applied Physics A: Materials Science and Processing, 2004, 79, 1023-1026.	2.3	59
67	Effect of p-toluene sulphonic acid doping on the properties of plasma polymerized aniline thin films. Synthetic Metals, 2004, 147, 133-138.	3.9	10
68	Flow-vacuum pyrolysis of 5-methylene-5H-dibenzo[a,d]cycloheptene. Journal of Analytical and Applied Pyrolysis, 2003, 67, 359-368.	5.5	6
69	Flow-vacuum pyrolysis of three dibenzocycloalkanones. Journal of Analytical and Applied Pyrolysis, 2001, 57, 261-274.	5.5	6
70	Flow-vacuum pyrolysis of 5H-dibenzo[a,d]cyclohepten-5-one oxime and 10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-one oxime. Journal of Analytical and Applied Pyrolysis, 2000, 53, 161-176.	5.5	7
71	Spectral Characteristics of 2,7-Naphthyridines. Molecules, 2000, 5, 956-960.	3.8	5
72	Flash Vacuum Pyrolysis of 2,5-Diphenyloxazole. Molecules, 2000, 5, 1004-1010.	3.8	0

#	Article	IF	CITATIONS
73	Flow vacuum pyrolysis of tetrazoles with annelated dibenzocycloalkane skeletons. Journal of Analytical and Applied Pyrolysis, 1999, 48, 129-146.	5.5	14