
Christian Vergara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2333418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Fluid–Structure Interaction Study of a New Wave Membrane Blood Pump. Cardiovascular Engineering and Technology, 2022, 13, 373-392.	1.6	5
2	Prediction of myocardial blood flow under stress conditions by means of a computational model. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1894-1905.	6.4	5
3	3D–0D closed-loop model for the simulation of cardiac biventricular electromechanics. Computer Methods in Applied Mechanics and Engineering, 2022, 391, 114607.	6.6	23
4	Computational electrophysiology of the coronary sinus branches based on electro-anatomical mapping for the prediction of the latest activated region. Medical and Biological Engineering and Computing, 2022, 60, 2307-2319.	2.8	2
5	A computational model applied to myocardial perfusion in the human heart: From large coronaries to microvasculature. Journal of Computational Physics, 2021, 424, 109836.	3.8	23
6	Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113468.	6.6	58
7	Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study. Mathematical Biosciences and Engineering, 2021, 18, 3364-3383.	1.9	5
8	A surrogate model for plaque modeling in carotids based on Robin conditions calibrated by cine MRI data. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3447.	2.1	6
9	Extended finite element method for <scp>fluidâ€structure</scp> interaction in wave membrane blood pump. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3467.	2.1	7
10	A Computational Fluid–Structure Interaction Study for Carotids With Different Atherosclerotic Plaques. Journal of Biomechanical Engineering, 2021, 143, .	1.3	11
11	On the Choice of Interface Parameters in Robin–Robin Loosely Coupled Schemes for Fluid–Structure Interaction. Fluids, 2021, 6, 213.	1.7	3
12	Mathematical Modeling and Numerical Simulation of Atherosclerotic Plaque Progression Based on Fluid-Structure Interaction. Journal of Mathematical Fluid Mechanics, 2021, 23, 1.	1.0	3
13	On the stability of a loosely-coupled scheme based on a Robin interface condition for fluid-structure interaction. Computers and Mathematics With Applications, 2021, 96, 109-119.	2.7	5
14	Image-Based Computational Hemodynamics Analysis of Systolic Obstruction in Hypertrophic Cardiomyopathy. Frontiers in Physiology, 2021, 12, 787082.	2.8	12
15	Image-Based Displacements Analysis and Computational Blood Dynamics after Endovascular Aneurysm Repair. Annals of Vascular Surgery, 2020, 69, 400-412.	0.9	5
16	Integration of activation maps of epicardial veins in computational cardiac electrophysiology. Computers in Biology and Medicine, 2020, 127, 104047.	7.0	11
17	An image-based computational hemodynamics study of the Systolic Anterior Motion of the mitral valve. Computers in Biology and Medicine, 2020, 123, 103922.	7.0	26
18	Computational Analysis of Turbulent Hemodynamics in Radiocephalic Arteriovenous Fistulas to Determine the Best Anastomotic Angles. Annals of Vascular Surgery, 2020, 68, 451-459.	0.9	5

CHRISTIAN VERGARA

#	Article	IF	CITATIONS
19	Wall Shear Stress Topological Skeleton Independently Predicts Long-Term Restenosis After Carotid Bifurcation Endarterectomy. Annals of Biomedical Engineering, 2020, 48, 2936-2949.	2.5	27
20	Optimized Schwarz Methods for Spherical Interfaces With Application to Fluid-Structure Interaction. SIAM Journal of Scientific Computing, 2020, 42, A751-A770.	2.8	7
21	Prediction of Long Term Restenosis Risk After Surgery in the Carotid Bifurcation by Hemodynamic and Geometric Analysis. Annals of Biomedical Engineering, 2019, 47, 1129-1140.	2.5	21
22	Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids. Finite Elements in Analysis and Design, 2019, 159, 1-14.	3.2	21
23	Assessing the Disturbed Flow and the Transition to Turbulence in the Arteriovenous Fistula. Journal of Biomechanical Engineering, 2019, 141, .	1.3	17
24	Computational fluid dynamic comparison between patch-based and primary closure techniques after carotid endarterectomy. Journal of Vascular Surgery, 2018, 67, 887-897.	1.1	19
25	An Unfitted Formulation for the Interaction of an Incompressible Fluid with a Thick Structure via an XFEM/DG Approach. SIAM Journal of Scientific Computing, 2018, 40, B59-B84.	2.8	20
26	Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels. Lecture Notes in Applied and Computational Mechanics, 2018, , 169-183.	2.2	20
27	Extended Finite Elements Method for Fluid-Structure Interaction with an Immersed Thick Non-linear Structure. SEMA SIMAI Springer Series, 2018, , 209-243.	0.7	1
28	Defective Boundary Conditions for PDEs with Applications in Haemodynamics. SEMA SIMAI Springer Series, 2018, , 285-312.	0.7	0
29	Numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2984.	2.1	15
30	Large eddy simulations for blood dynamics in realistic stenotic carotids. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2868.	2.1	34
31	Computational Fluid-Dynamic Analysis after Carotid Endarterectomy: Patch Graft versus Direct Suture Closure. Annals of Vascular Surgery, 2017, 44, 325-335.	0.9	13
32	Shear stress alterations in the celiac trunk of patients with a continuous-flow left ventricular assist device as shown by in-silico and in-vitro flow analyses. Journal of Heart and Lung Transplantation, 2017, 36, 906-913.	0.6	26
33	A computational fluid–structure interaction analysis of coronary Y-grafts. Medical Engineering and Physics, 2017, 47, 117-127.	1.7	21
34	Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Medical Engineering and Physics, 2017, 47, 38-46.	1.7	37
35	Computational study of the risk of restenosis in coronary bypasses. Biomechanics and Modeling in Mechanobiology, 2017, 16, 313-332.	2.8	15
36	Regarding "Closure technique after carotid endarterectomy influences local hemodynamics― Journal of Vascular Surgery, 2016, 63, 1409.	1.1	1

CHRISTIAN VERGARA

#	Article	IF	CITATIONS
37	Computational study of the fluid-dynamics in carotids before and after endarterectomy. Journal of Biomechanics, 2016, 49, 26-38.	2.1	31
38	A coupled 3D–1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network. Journal of Computational Physics, 2016, 308, 218-238.	3.8	29
39	Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure interaction. Numerische Mathematik, 2015, 131, 369-404.	1.9	13
40	Computational generation of the Purkinje network driven by clinical measurements: The case of pathological propagations. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1558-1577.	2.1	23
41	Patient-specific generation of the Purkinje network driven by clinical measurements of a normal propagation. Medical and Biological Engineering and Computing, 2014, 52, 813-826.	2.8	44
42	Inexact accurate partitioned algorithms for fluid–structure interaction problems with finite elasticity in haemodynamics. Journal of Computational Physics, 2014, 273, 598-617.	3.8	31
43	Impact of hemodynamics on lumen boundary displacements in abdominal aortic aneurysms by means of dynamic computed tomography and computational fluid dynamics. Biomechanics and Modeling in Mechanobiology, 2013, 12, 1263-1276.	2.8	23
44	Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics. Computers and Fluids, 2013, 86, 470-482.	2.5	38
45	Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomechanics and Modeling in Mechanobiology, 2013, 12, 801-813.	2.8	52
46	Prescription of General Defective Boundary Conditions in Fluid-Dynamics. Milan Journal of Mathematics, 2012, 80, 333-350.	1.1	17
47	Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics. Milan Journal of Mathematics, 2012, 80, 443-467.	1.1	28
48	Influence of Bicuspid Valve Geometry on Ascending Aortic Fluid Dynamics: A Parametric Study. Artificial Organs, 2012, 36, 368-378.	1.9	53
49	A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem. SIAM Journal of Scientific Computing, 2011, 33, 1181-1211.	2.8	49
50	Nitsche's Method for Defective Boundary Value Problems in Incompressibile Fluid-dynamics. Journal of Scientific Computing, 2011, 46, 100-123.	2.3	20
51	Womersley Number-Based Estimates of Blood Flow Rate in Doppler Analysis: In Vivo Validation by Means of Phase-Contrast MRI. IEEE Transactions on Biomedical Engineering, 2010, 57, 1807-1815.	4.2	41
52	Womersley number-based estimation of flow rate with Doppler ultrasound: Sensitivity analysis and first clinical application. Computer Methods and Programs in Biomedicine, 2010, 98, 151-160.	4.7	12
53	Comparative Finite Element Model Analysis of Ascending Aortic Flow in Bicuspid and Tricuspid Aortic Valve. Artificial Organs, 2010, 34, 1114-1120.	1.9	78
54	Analysis and Optimization of Robin–Robin Partitioned Procedures in Fluid-Structure Interaction Problems. SIAM Journal on Numerical Analysis, 2010, 48, 2091-2116.	2.3	56

CHRISTIAN VERGARA

#	Article	IF	CITATIONS
55	Robin–Robin preconditioned Krylov methods for fluid–structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2768-2784.	6.6	88
56	Fluid–structure partitioned procedures based on Robin transmission conditions. Journal of Computational Physics, 2008, 227, 7027-7051.	3.8	212
57	Multiscale Boundary Conditions for Drug Release from Cardiovascular Stents. Multiscale Modeling and Simulation, 2008, 7, 565-588.	1.6	31
58	A New Approach to Numerical Solution of Defective Boundary Value Problems in Incompressible Fluid Dynamics. SIAM Journal on Numerical Analysis, 2008, 46, 2769-2794.	2.3	40
59	Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound in Medicine and Biology, 2006, 32, 1545-1555.	1.5	29