Seungpyo Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332185/publications.pdf

Version: 2024-02-01

83 papers 12,993 citations

38 h-index 79 g-index

85 all docs 85 docs citations

85 times ranked 19680 citing authors

#	Article	IF	CITATIONS
1	Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2, 751-760.	31.5	7,469
2	Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells:  Nanoscale Hole Formation and Enhanced Membrane Permeability. Bioconjugate Chemistry, 2006, 17, 728-734.	3.6	623
3	Interaction of Poly(amidoamine) Dendrimers with Supported Lipid Bilayers and Cells:  Hole Formation and the Relation to Transport. Bioconjugate Chemistry, 2004, 15, 774-782.	3.6	556
4	The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform. Chemistry and Biology, 2007, 14, 107-115.	6.0	521
5	Targeted nanoparticles for cancer therapy. Nano Today, 2007, 2, 14-21.	11.9	431
6	Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Experimental and Molecular Medicine, 2019, 51, 1-10.	7.7	150
7	The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2015, 59, 880-889.	3.2	148
8	Dendrimerâ€Mediated Multivalent Binding for the Enhanced Capture of Tumor Cells. Angewandte Chemie - International Edition, 2011, 50, 11769-11772.	13.8	147
9	Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms?. Nano Convergence, 2018, 5, 38.	12.1	140
10	Effect of Size, Surface Charge, and Hydrophobicity of Poly(amidoamine) Dendrimers on Their Skin Penetration. Biomacromolecules, 2012, 13, 2154-2162.	5.4	138
11	Dendrimerâ€based nanocarriers: a versatile platform for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1409.	6.1	132
12	Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. Journal of Controlled Release, 2014, 191, 115-122.	9.9	120
13	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	12.8	113
14	Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Frontiers in Chemistry, 2014, 2, 108.	3.6	108
15	Treg-Cell-Derived IL-35-Coated Extracellular Vesicles Promote Infectious Tolerance. Cell Reports, 2020, 30, 1039-1051.e5.	6.4	93
16	Chemically and Biologically Engineered Bacteriaâ€Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. Advanced Materials, 2021, 33, e2102580.	21.0	93
17	Size and Surface Charge of Engineered Poly(amidoamine) Dendrimers Modulate Tumor Accumulation and Penetration: A Model Study Using Multicellular Tumor Spheroids. Molecular Pharmaceutics, 2016, 13, 2155-2163.	4.6	89
18	Enhanced Tumor Cell Isolation by a Biomimetic Combination of E-selectin and anti-EpCAM: Implications for the Effective Separation of Circulating Tumor Cells (CTCs). Langmuir, 2010, 26, 8589-8596.	3.5	83

#	Article	IF	Citations
19	Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nature Communications, 2022, 13, 1845.	12.8	77
20	An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy. Nano Letters, 2020, 20, 4901-4909.	9.1	69
21	The Role of Ganglioside GM1 in Cellular Internalization Mechanisms of Poly(amidoamine) Dendrimers. Bioconjugate Chemistry, 2009, 20, 1503-1513.	3.6	68
22	Clinical indications for, and the future of, circulating tumor cells. Advanced Drug Delivery Reviews, 2018, 125, 143-150.	13.7	57
23	Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. Journal of Drug Targeting, 2015, 23, 642-650.	4.4	55
24	Nanomechanical Control of Cell Rolling in Two Dimensions through Surface Patterning of Receptors. Nano Letters, 2008, 8, 1153-1158.	9.1	53
25	Direct Measurements on CD24-Mediated Rolling of Human Breast Cancer MCF-7 Cells on E-Selectin. Analytical Chemistry, 2011, 83, 1078-1083.	6.5	53
26	Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells. Nanoscale, 2014, 6, 2812-2820.	5.6	53
27	Understanding nano-bio interactions to improve nanocarriers for drug delivery. MRS Bulletin, 2014, 39, 227-237.	3.5	50
28	Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chemical Communications, 2011, 47, 10302.	4.1	49
29	Dendronâ€Based Micelles for Topical Delivery of Endoxifen: A Potential Chemoâ€Preventive Medicine for Breast Cancer. Advanced Functional Materials, 2014, 24, 2442-2449.	14.9	49
30	Eradication of Acute Myeloid Leukemia with FLT3 Ligand–Targeted miR-150 Nanoparticles. Cancer Research, 2016, 76, 4470-4480.	0.9	48
31	Temporal Control over Cellular Targeting through Hybridization of Folate-targeted Dendrimers and PEG-PLA Nanoparticles. Biomacromolecules, 2012, 13, 1223-1230.	5.4	47
32	Dendritic nanoparticles: the next generation of nanocarriers?. Therapeutic Delivery, 2012, 3, 941-959.	2.2	46
33	Recent advances in nanotechnologyâ€based detection and separation of circulating tumor cells. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 223-239.	6.1	45
34	Differential Detection of Tumor Cells Using a Combination of Cell Rolling, Multivalent Binding, and Multiple Antibodies. Analytical Chemistry, 2014, 86, 6088-6094.	6.5	44
35	Tuning the Selectivity of Dendron Micelles Through Variations of the Poly(ethylene glycol) Corona. ACS Nano, 2016, 10, 6905-6914.	14.6	43
36	Covalent Immobilization of P-Selectin Enhances Cell Rolling. Langmuir, 2007, 23, 12261-12268.	3.5	42

#	Article	lF	Citations
37	Next-Generation CDK2/9 Inhibitors and Anaphase Catastrophe in Lung Cancer. Journal of the National Cancer Institute, 2017, 109, .	6.3	41
38	Effective Capture of Circulating Tumor Cells from a Transgenic Mouse Lung Cancer Model Using Dendrimer Surfaces Immobilized with Anti-EGFR. Analytical Chemistry, 2015, 87, 10096-10102.	6.5	39
39	Recent advances in targeted drug delivery approaches using dendritic polymers. Biomaterials Science, 2015, 3, 1025-1034.	5.4	39
40	Nanoparticle Conjugation Stabilizes and Multimerizes \hat{l}^2 -Hairpin Peptides To Effectively Target PD-1/PD-L1 \hat{l}^2 -Sheet-Rich Interfaces. Journal of the American Chemical Society, 2020, 142, 1832-1837.	13.7	39
41	Immunoavidity-Based Capture of Tumor Exosomes Using Poly(amidoamine) Dendrimer Surfaces. Nano Letters, 2020, 20, 5686-5692.	9.1	39
42	Bespoke Pretargeted Nanoradioimmunotherapy for the Treatment of Non-Hodgkin Lymphoma. ACS Nano, 2018, 12, 1544-1563.	14.6	38
43	Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS oVâ€2 testing development. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1754.	6.1	38
44	Dendritic PEG outer shells enhance serum stability of polymeric micelles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1879-1889.	3.3	35
45	Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules, 2014, 47, 6911-6918.	4.8	32
46	Multivalent Binding and Biomimetic Cell Rolling Improves the Sensitivity and Specificity of Circulating Tumor Cell Capture. Clinical Cancer Research, 2018, 24, 2539-2547.	7.0	32
47	Channel Surface Patterning of Alternating Biomimetic Protein Combinations for Enhanced Microfluidic Tumor Cell Isolation. Analytical Chemistry, 2012, 84, 4022-4028.	6.5	30
48	Positively Charged Dendron Micelles Display Negligible Cellular Interactions. ACS Macro Letters, 2013, 2, 77-81.	4.8	29
49	Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Frontiers in Pharmacology, 2020, 11, 607689.	3.5	28
50	Surface engineering for efficient capture of circulating tumor cells in renal cell carcinoma: From nanoscale analysis to clinical application. Biosensors and Bioelectronics, 2020, 162, 112250.	10.1	27
51	AXL Mediates Cetuximab and Radiation Resistance Through Tyrosine 821 and the c-ABL Kinase Pathway in Head and Neck Cancer. Clinical Cancer Research, 2020, 26, 4349-4359.	7.0	26
52	Single plasmonic nanoparticles for ultrasensitive DNA sensing: From invisible to visible. Biosensors and Bioelectronics, 2016, 79, 266-272.	10.1	25
53	Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke?. Nanomedicine, 2018, 13, 2327-2340.	3.3	25
54	Tumor penetration of Sub-10 nm nanoparticles: effect of dendrimer properties on their penetration in multicellular tumor spheroids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102059.	3. 3	25

#	Article	IF	CITATIONS
55	Sub-lethal hyperthermia promotes epithelial-to-mesenchymal-like transition of breast cancer cells: implication of the synergy between hyperthermia and chemotherapy. RSC Advances, 2019, 9, 52-57.	3.6	24
56	Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Advanced Drug Delivery Reviews, 2018, 125, 36-47.	13.7	23
57	Nanoscale polymeric penetration enhancers in topical drug delivery. Polymer Chemistry, 2013, 4, 2651.	3.9	22
58	Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Experimental Neurobiology, 2022, 31, 65-88.	1.6	21
59	Epithelial–Mesenchymal Transition Enhances Nanoscale Actin Filament Dynamics of Ovarian Cancer Cells. Journal of Physical Chemistry B, 2013, 117, 9233-9240.	2.6	16
60	Noncatalytic Endosialidase Enables Surface Capture of Small-Cell Lung Cancer Cells Utilizing Strong Dendrimer-Mediated Enzyme-Glycoprotein Interactions. Analytical Chemistry, 2018, 90, 3670-3675.	6.5	14
61	Enhanced detection of cell-free DNA (cfDNA) enables its use as a reliable biomarker for diagnosis and prognosis of gastric cancer. PLoS ONE, 2020, 15, e0242145.	2.5	14
62	Bimodal liquid biopsy for cancer immunotherapy based on peptide engineering and nanoscale analysis. Biosensors and Bioelectronics, 2022, 213, 114445.	10.1	14
63	The role of polymers in detection and isolation of circulating tumor cells. Polymer Chemistry, 2012, 3, 2336.	3.9	13
64	Triâ€modal liquid biopsy: Combinational analysis of circulating tumor cells, exosomes, and cellâ€free DNA using machine learning algorithm. Clinical and Translational Medicine, 2021, 11, e499.	4.0	13
65	Dendrimers for cancer immunotherapy: Avidityâ€based drug delivery vehicles for effective antiâ€tumor immune response. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1752.	6.1	13
66	Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers, 2022, 14, 2061.	3.7	13
67	Dendrimer-Based Platform for Effective Capture of Tumor Cells after TGFβ ₁ -Induced Epithelial–Mesenchymal Transition. Analytical Chemistry, 2019, 91, 8374-8382.	6.5	11
68	Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion. Advanced Science, 2022, 9, e2103098.	11.2	11
69	Cytochalasin B Treatment and Osmotic Pressure Enhance the Production of Extracellular Vesicles (EVs) with Improved Drug Loading Capacity. Nanomaterials, 2022, 12, 3.	4.1	10
70	Alzheimer's Disease Diagnosis Using Misfolding Proteins in Blood. Dementia and Neurocognitive Disorders, 2020, 19, 1.	1.4	9
71	Nanotechnology enabling the use of circulating tumor cells (CTCs) as reliable cancer biomarkers. Advanced Drug Delivery Reviews, 2018, 125, 1-2.	13.7	7
72	Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. Biomacromolecules, 2021, 22, 3746-3755.	5.4	7

#	Article	IF	CITATIONS
73	Native Ion Mobility–Mass Spectrometry-Enabled Fast Structural Interrogation of Labile Protein Surface Modifications at the Intact Protein Level. Analytical Chemistry, 2022, 94, 2142-2153.	6.5	6
74	Branched, dendritic, and hyperbranched polymers in liquid biopsy device design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1770.	6.1	6
75	Orally Administered Benzofuran Derivative Disaggregated $\hat{A^2}$ Plaques and Oligomers in the Brain of 5XFAD Alzheimer Transgenic Mouse. ACS Chemical Neuroscience, 2021, 12, 99-108.	3 . 5	5
76	AXL regulates neuregulin1 expression leading to cetuximab resistance in head and neck cancer. BMC Cancer, 2022, 22, 447.	2.6	4
77	Dendritic–Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjugate Chemistry, 2022, , .	3.6	3
78	Crossâ€Decoration of Dendritic Cells by Nonâ€Inherited Maternal Antigenâ€Containing Extracellular Vesicles: Potential Mechanism for PDâ€L1â€Based Tolerance in Cord Blood and Organ Transplantation. American Journal of Transplantation, 2022, , .	4.7	2
79	Dendrimers and dendritic nanoparticles for stimuli-responsive nanomedicine., 2022,, 119-131.		1
80	BIOINSPIRED ENGINEERING OF MULTIFUNCTIONAL DEVICES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 31-63.	0.1	0
81	Drug Delivery: Dendron-Based Micelles for Topical Delivery of Endoxifen: A Potential Chemo-Preventive Medicine for Breast Cancer (Adv. Funct. Mater. 17/2014). Advanced Functional Materials, 2014, 24, 2441-2441.	14.9	0
82	Cover Image, Volume 8, Issue 2. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, i-i.	6.1	0
83	MULTIFUNCTIONAL DENDRITIC NANOPARTICLES AS A NANOMEDICINE PLATFORM. Frontiers in Nanobiomedical Research, 2018, , 155-186.	0.1	o