
Jared Gregory Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stomata-mediated interactions between plants, herbivores, and the environment. Trends in Plant Science, 2022, 27, 287-300.	8.8	51

2 Plant Nutrition Influences Resistant Maize Defense Responses to the Fall Armyworm (Spodoptera) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

3	Feeding and oviposition by the brown marmorated stink bug, Halyomorpha halys (StåI) induce direct and systemic changes in volatile compound emissions from potted peach and tree of heaven. Arthropod-Plant Interactions, 2022, 16, 227-247.	1.1	5
4	Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies. Communications Biology, 2022, 5, 469.	4.4	13
5	Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release. New Phytologist, 2021, 230, 793-803.	7.3	34
6	Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. BMC Plant Biology, 2021, 21, 138.	3.6	13
7	Cover Crop Soil Legacies Alter Phytochemistry and Resistance to Fall Armyworm (Lepidoptera:) Tj ETQq1 1 0.7843	14 rgBT / 1.4	Oyerlock 1
8	Herbivore-induced plant volatiles mediate behavioral interactions between a leaf-chewing and a phloem-feeding herbivore. Basic and Applied Ecology, 2021, 53, 39-48.	2.7	7
9	Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors. Journal of Chemical Ecology, 2021, 47, 822-833.	1.8	6
10	Asymmetry in Herbivore Effector Responses: Caterpillar Frass Effectors Reduce Performance of a Subsequent Herbivore. Journal of Chemical Ecology, 2020, 46, 76-83.	1.8	18
11	The role of toxic nectar secondary compounds in driving differential bumble bee preferences for milkweed flowers. Oecologia, 2020, 193, 619-630.	2.0	8
12	Chemical Ecology of Multitrophic Microbial Interactions: Plants, Insects, Microbes and the Metabolites that Connect Them. Journal of Chemical Ecology, 2020, 46, 645-648.	1.8	4
13	Generalising indirect defence and resistance of plants. Ecology Letters, 2020, 23, 1137-1152.	6.4	53
14	Topâ€down effects from parasitoids may mediate plant defence and plant fitness. Functional Ecology, 2020, 34, 1767-1778.	3.6	9
15	Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. Journal of Chemical Ecology, 2019, 45, 693-707.	1.8	47
16	â€~Tuning' communication among four trophic levels of the root biome to facilitate biological control. Biological Control, 2019, 131, 49-53.	3.0	9
17	Chemical cues linked to risk: Cues from belowâ€ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Functional Ecology, 2019, 33, 798-808.	3.6	35
18	Airborne signals synchronize the defenses of neighboring plants in response to touch. Journal of Experimental Botany, 2019, 70, 691-700.	4.8	46

2

JARED GREGORY ALI

#	Article	IF	CITATIONS
19	Asymmetric effects of a leafâ€ehewing herbivore on aphid population growth. Ecological Entomology, 2019, 44, 81-92.	2.2	16
20	Mycorrhizal composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner. Pedobiologia, 2018, 66, 29-35.	1.2	17
21	Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. Journal of Chemical Ecology, 2018, 44, 727-745.	1.8	10
22	Tradeâ€offs and tritrophic consequences of host shifts in specialized root herbivores. Functional Ecology, 2017, 31, 153-160.	3.6	16
23	Susceptibility of wounded and intact black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae) to entomopathogenic nematodes. Journal of Invertebrate Pathology, 2017, 150, 121-129.	3.2	10
24	Choosy mothers pick challenging plants: maternal preference and larval performance of a specialist herbivore are not linked. Ecological Entomology, 2017, 42, 33-41.	2.2	22
25	Identification of plant semiochemicals and evaluation of their interactions with early spring insect pests of asparagus. Journal of Plant Interactions, 2016, 11, 11-19.	2.1	7
26	Plant Cues and Factors Influencing the Behaviour of Beneficial Nematodes as a Belowground Indirect Defense. Advances in Botanical Research, 2015, 75, 191-214.	1.1	2
27	Asymmetry of plantâ€mediated interactions between specialist aphids and caterpillars on two milkweeds. Functional Ecology, 2014, 28, 1404-1412.	3.6	98
28	Aboveâ€ground herbivory by red milkweed beetles facilitates above―and belowâ€ground conspecific insects and reduces fruit production in common milkweed. Journal of Ecology, 2014, 102, 1038-1047.	4.0	27
29	Sending Mixed Messages: A Trophic Cascade Produced by a Belowground Herbivore-Induced Cue. Journal of Chemical Ecology, 2013, 39, 1140-1147.	1.8	41
30	Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soil. Frontiers in Plant Science, 2013, 4, 378.	3.6	22
31	An Amino Acid Substitution Inhibits Specialist Herbivore Production of an Antagonist Effector and Recovers Insect-Induced Plant Defenses Â. Plant Physiology, 2012, 160, 1468-1478.	4.8	48
32	Induced Release of a Plant-Defense Volatile †Deceptively' Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen. PLoS Pathogens, 2012, 8, e1002610.	4.7	244
33	Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 2012, 17, 293-302.	8.8	634
34	Ecology and Evolution of Soil Nematode Chemotaxis. Journal of Chemical Ecology, 2012, 38, 615-628.	1.8	118
35	Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats. PLoS ONE, 2012, 7, e38146.	2.5	99
36	Interspecific Nematode Signals Regulate Dispersal Behavior. PLoS ONE, 2012, 7, e38735.	2.5	79

155 166
166
17
5
26