
Jared Gregory Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 2012, 17, 293-302.	8.8	634
2	Induced Release of a Plant-Defense Volatile â€~Deceptively' Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen. PLoS Pathogens, 2012, 8, e1002610.	4.7	244
3	Subterranean Herbivore-induced Volatiles Released by Citrus Roots upon Feeding by Diaprepes abbreviatus Recruit Entomopathogenic Nematodes. Journal of Chemical Ecology, 2010, 36, 361-368.	1.8	166
4	Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology, 2011, 99, 26-35.	4.0	155
5	Ecology and Evolution of Soil Nematode Chemotaxis. Journal of Chemical Ecology, 2012, 38, 615-628.	1.8	118
6	Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats. PLoS ONE, 2012, 7, e38146.	2.5	99
7	Asymmetry of plantâ€mediated interactions between specialist aphids and caterpillars on two milkweeds. Functional Ecology, 2014, 28, 1404-1412.	3.6	98
8	Interspecific Nematode Signals Regulate Dispersal Behavior. PLoS ONE, 2012, 7, e38735.	2.5	79
9	Generalising indirect defence and resistance of plants. Ecology Letters, 2020, 23, 1137-1152.	6.4	53
10	Stomata-mediated interactions between plants, herbivores, and the environment. Trends in Plant Science, 2022, 27, 287-300.	8.8	51
11	An Amino Acid Substitution Inhibits Specialist Herbivore Production of an Antagonist Effector and Recovers Insect-Induced Plant Defenses Â. Plant Physiology, 2012, 160, 1468-1478.	4.8	48
12	Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. Journal of Chemical Ecology, 2019, 45, 693-707.	1.8	47
13	Airborne signals synchronize the defenses of neighboring plants in response to touch. Journal of Experimental Botany, 2019, 70, 691-700.	4.8	46
14	Sending Mixed Messages: A Trophic Cascade Produced by a Belowground Herbivore-Induced Cue. Journal of Chemical Ecology, 2013, 39, 1140-1147.	1.8	41
15	Chemical cues linked to risk: Cues from belowâ€ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Functional Ecology, 2019, 33, 798-808.	3.6	35
16	Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release. New Phytologist, 2021, 230, 793-803.	7.3	34
17	Aboveâ€ground herbivory by red milkweed beetles facilitates above―and belowâ€ground conspecific insects and reduces fruit production in common milkweed. Journal of Ecology, 2014, 102, 1038-1047.	4.0	27

18 The Role of Root-Produced Volatile Secondary Metabolites in Mediating Soil Interactions. , 0, , .

JARED GREGORY ALI

#	Article	IF	CITATIONS
19	Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soil. Frontiers in Plant Science, 2013, 4, 378.	3.6	22
20	Choosy mothers pick challenging plants: maternal preference and larval performance of a specialist herbivore are not linked. Ecological Entomology, 2017, 42, 33-41.	2.2	22
21	Asymmetry in Herbivore Effector Responses: Caterpillar Frass Effectors Reduce Performance of a Subsequent Herbivore. Journal of Chemical Ecology, 2020, 46, 76-83.	1.8	18
22	Female spotted cucumber beetles use own cuticular hydrocarbon signature to choose immunocompatible mates. Animal Behaviour, 2010, 80, 9-12.	1.9	17
23	Mycorrhizal composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner. Pedobiologia, 2018, 66, 29-35.	1.2	17
24	Tradeâ€offs and tritrophic consequences of host shifts in specialized root herbivores. Functional Ecology, 2017, 31, 153-160.	3.6	16
25	Asymmetric effects of a leafâ€chewing herbivore on aphid population growth. Ecological Entomology, 2019, 44, 81-92.	2.2	16
26	Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. BMC Plant Biology, 2021, 21, 138.	3.6	13
27	Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies. Communications Biology, 2022, 5, 469.	4.4	13
28	Susceptibility of wounded and intact black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae) to entomopathogenic nematodes. Journal of Invertebrate Pathology, 2017, 150, 121-129.	3.2	10
29	Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore. Journal of Chemical Ecology, 2018, 44, 727-745.	1.8	10
30	Plant Nutrition Influences Resistant Maize Defense Responses to the Fall Armyworm (Spodoptera) Tj ETQq0 0 0	rgBT/Overl	ock 10 Tf 50
31	â€~Tuning' communication among four trophic levels of the root biome to facilitate biological control. Biological Control, 2019, 131, 49-53.	3.0	9
32	Topâ€down effects from parasitoids may mediate plant defence and plant fitness. Functional Ecology, 2020, 34, 1767-1778.	3.6	9
33	The role of toxic nectar secondary compounds in driving differential bumble bee preferences for milkweed flowers. Oecologia, 2020, 193, 619-630.	2.0	8
34	Cover Crop Soil Legacies Alter Phytochemistry and Resistance to Fall Armyworm (Lepidoptera:) Tj ETQq0 0 0 rgB	T /Qyerlock 1.4	2 10 Tf 50 14
35	Identification of plant semiochemicals and evaluation of their interactions with early spring insect pests of asparagus. Journal of Plant Interactions, 2016, 11, 11-19.	2.1	7
36	Herbivore-induced plant volatiles mediate behavioral interactions between a leaf-chewing and a	2.7	7

phloem-feeding herbivore. Basic and Applied Ecology, 2021, 53, 39-48.

#	Article	IF	CITATIONS
37	Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors. Journal of Chemical Ecology, 2021, 47, 822-833.	1.8	6
38	Female Choice by Scent Recognition in the Spotted Cucumber Beetle Ethology, 2006, 112, 300-306.	1.1	5
39	Feeding and oviposition by the brown marmorated stink bug, Halyomorpha halys (Stål) induce direct and systemic changes in volatile compound emissions from potted peach and tree of heaven. Arthropod-Plant Interactions, 2022, 16, 227-247.	1.1	5
40	Chemical Ecology of Multitrophic Microbial Interactions: Plants, Insects, Microbes and the Metabolites that Connect Them. Journal of Chemical Ecology, 2020, 46, 645-648.	1.8	4
41	Plant Cues and Factors Influencing the Behaviour of Beneficial Nematodes as a Belowground Indirect Defense. Advances in Botanical Research, 2015, 75, 191-214.	1.1	2