Philip Mountford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332159/publications.pdf

Version: 2024-02-01

		31976	ϵ	54796
168	8,205	53		79
papers	citations	h-index		g-index
			_	
173	173	173		3391
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Reactions and Applications of Titanium Imido Complexes. Accounts of Chemical Research, 2005, 38, 839-849.	15.6	266
2	Coordination, organometallic and related chemistry of tris(pyrazolyl)methane ligands. Dalton Transactions, 2005, , 635.	3.3	238
3	Lanthanide Borohydride Complexes Supported by Diaminobis(phenoxide) Ligands for the Polymerization of ε-Caprolactone and l- and rac-Lactide. Inorganic Chemistry, 2005, 44, 9046-9055.	4.0	215
4	Transition Metal Imido Compounds as Ziegler-Natta Olefin Polymerisation Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 355-366.	4.3	214
5	Ring-Opening Polymerization of <i>rac</i> -Lactide by Bis(phenolate)amine-Supported Samarium Borohydride Complexes: An Experimental and DFT Study. Organometallics, 2010, 29, 3602-3621.	2.3	151
6	New transition metal imido chemistry with diamido-donor ligands. Coordination Chemistry Reviews, 2001, 216-217, 65-97.	18.8	143
7	Enabling and Probing Oxidative Addition and Reductive Elimination at a Group 14 Metal Center: Cleavage and Functionalization of E–H Bonds by a Bis(boryl)stannylene. Journal of the American Chemical Society, 2016, 138, 4555-4564.	13.7	142
8	Cationic and charge-neutral calcium tetrahydroborate complexes and their use in the controlled ring-opening polymerisation of rac-lactide. Chemical Communications, 2011, 47, 2276-2278.	4.1	135
9	New titanium imido chemistry. Chemical Communications, 1997, , 2127-2134.	4.1	132
10	Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerisation of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA. Chemical Communications, 2010, 46, 273-275.	4.1	132
11	Synthesis and imido-group exchange reactions of tert-butylimidotitanium complexes. Journal of the Chemical Society Dalton Transactions, 1997, , 1549-1558.	1.1	109
12	Zwitterionic bis(phenolate)amine lanthanide complexes for the ring-opening polymerisation of cyclic esters. Dalton Transactions, 2008, , 32-35.	3.3	104
13	Cycloaddition reactions of titanium and zirconium imido, oxo and hydrazido complexes supported by tetraaza macrocyclic ligands ‡. Journal of the Chemical Society Dalton Transactions, 1999, , 379-392.	1.1	102
14	Group 3 and Lanthanide Boryl Compounds: Syntheses, Structures, and Bonding Analyses of Scâ´B, Yâ´B, and Luâ´B Ïf-Coordinated NHC Analogues. Journal of the American Chemical Society, 2011, 133, 3836-3839.	13.7	102
15	Stable GaX2, InX2 and TlX2 radicals. Nature Chemistry, 2014, 6, 315-319.	13.6	101
16	Group 4 metal complexes for homogeneous olefin polymerisation: a short tutorial review. Applied Petrochemical Research, 2015, 5, 153-171.	1.3	101
17	Synthesis, Structures, and Reactions of Titanium, Scandium, and Yttrium Complexes of Diamino-bis(phenolate) Ligands:  Monomeric, Dimeric, Neutral, Cationic, and Multiply Bonded Derivatives. Organometallics, 2005, 24, 309-330.	2.3	98
18	Reactions of Cyclopentadienyl-Amidinate Titanium Imido Compounds with CS2, COS, Isocyanates, and Other Unsaturated Organic Compounds. Organometallics, 2006, 25, 1167-1187.	2.3	98

#	Article	IF	CITATIONS
19	Sulfonamide-Supported Aluminum Catalysts for the Ring-Opening Polymerization ofrac-Lactide. Organometallics, 2010, 29, 1246-1260.	2.3	94
20	Nonclassical Titanocene Silyl Hydrides. Chemistry - A European Journal, 2004, 10, 4991-4999.	3.3	86
21	Sulfonamide-Supported Group 4 Catalysts for the Ring-Opening Polymerization of Îμ-Caprolactone and rac-Lactide. Inorganic Chemistry, 2009, 48, 10442-10454.	4.0	86
22	Zirconium Complexes of Diamineâ^Bis(phenolate) Ligands:  Synthesis, Structures, and Solution Dynamics. Organometallics, 2002, 21, 1367-1382.	2.3	83
23	Synthesis and Reactivity of Calix[4]arene-Supported Group 4 Imido Complexes. Chemistry - A European Journal, 2003, 9, 3634-3654.	3.3	82
24	Sulfonamide, Phenolate, and Directing Ligand-Free Indium Initiators for the Ring-Opening Polymerization of <i>rac</i> -Lactide. Organometallics, 2011, 30, 1202-1214.	2.3	79
25	Recent developments in the non-cyclopentadienyl organometallic and related chemistry of scandium. Chemical Communications, 2003, , 1797.	4.1	77
26	Are J(Siâ^'H) NMR Coupling Constants Really a Probe for the Existence of Nonclassical Hâ^'Si Interactions?. Journal of the American Chemical Society, 2003, 125, 642-643.	13.7	77
27	Potassium, zinc, and magnesium complexes of a bulky OOO-tridentate bis(phenolate) ligand: synthesis, structures, and studies of cyclic ester polymerisation. Dalton Transactions, 2013, 42, 9313.	3.3	74
28	Ligand Variations in New Sulfonamide-Supported Group 4 Ring-Opening Polymerization Catalysts. Organometallics, 2010, 29, 4171-4188.	2.3	73
29	A Family of Scandium and Yttrium Tris((trimethylsilyl)methyl) Complexes with Neutral N3Donor Ligands. Organometallics, 2005, 24, 3136-3148.	2.3	71
30	Synthesis, Structures, and Olefin Polymerization Capability of Vanadium(4+) Imido Compounds withfac-N3Donor Ligands. Inorganic Chemistry, 2006, 45, 6411-6423.	4.0	71
31	Novel double substrate insertion versus isocyanate extrusion in reactions of imidotitanium complexes with CO2: critical dependence on imido N-substituents â€. Dalton Transactions RSC, 2001, , 1392-1394.	2.3	70
32	Synthesis and structural characterization of an azatitanacyclobutene: the key intermediate in the catalytic anti-Markovnikov addition of primary amines to \hat{l}_{\pm} -alkynes. Chemical Communications, 2004, , 704-705.	4.1	70
33	Imido-Alkyne Coupling in Titanium Complexes:  New Insights into the Alkyne Hydroamination Reaction. Organometallics, 2007, 26, 5522-5534.	2.3	70
34	A DFT Study of the Mechanism of Polymerization of εâ€Caprolactone Initiated by Organolanthanide Borohydride Complexes. Chemistry - A European Journal, 2008, 14, 5507-5518.	3.3	70
35	Heterobimetallic Complexes Containing Ca–Fe or Yb–Fe Bonds: Synthesis and Molecular and Electronic Structures of [M{CpFe(CO) ₂ } ₂ (THF) ₃] ₂ (Electronic Structures of [M{CpFe(CO) ₂ } ₃] ₃] ₃	Qq B.7 0.7	846814 rgBT/
36	Surprising diversity of non-classical silicon–hydrogen interactions in half-sandwich complexes of Nb and Ta: M–H â√ Si–Cl interligand hypervalent interaction (IHI) versus stretched and unstretched β-Si–Hâ√agostic bondingâ€. Dalton Transactions RSC, 2001, , 2903-2915.	M 2.3	67

#	Article	IF	Citations
37	A remarkable inversion of structure–activity dependence on imido N-substituents with varying co-ligand topology and the synthesis of a new borate-free zwitterionic polymerisation catalyst. Chemical Communications, 2006, , 436-438.	4.1	67
38	Sodium, magnesium and zinc complexes of mono(phenolate) heteroscorpionate ligands. Dalton Transactions, 2009, , 85-96.	3.3	67
39	Syntheses and Structural Diversity of Group 2 and Group 12 Tris(pyrazolyl)meth <i>ane</i> and Zwitterionic Tris(pyrazolyl)methan <i>iole</i> compounds. Organometallics, 2010, 29, 1174-1190.	2.3	67
40	Pendant Arm Functionalized Benzamidinate Titanium Imido Compounds:  Experimental and Computational Studies of Their Reactions with CO2. Organometallics, 2005, 24, 2347-2367.	2.3	65
41	New ligand platforms for developing the chemistry of the Tiĩ€N–NR2 functional group and the insertion of alkynes into the N–N bond of a Tiĩ€N–NPh2 ligand. Chemical Communications, 2007, , 4937.	4.1	65
42	Discovery and evaluation of highly active imidotitanium ethylene polymerisation catalysts using high throughput catalyst screening. Chemical Communications, 2004, , 434-435.	4.1	62
43	AlMe3and ZnMe2Adducts of a Titanium Imido Methyl Cation:Â A Combined Crystallographic, Spectroscopic, and DFT Study. Journal of the American Chemical Society, 2006, 128, 15005-15018.	13.7	62
44	Well-defined imidotitanium alkyl cations: agostic interactions, migratory insertion vs. [2+2] cycloaddition, and the first structurally authenticated AlMe3 adduct of any transition metal alkyl cation. Chemical Communications, 2005, , 3313.	4.1	58
45	Reactions of cyclopentadienyl-amidinate titanium imido compounds with CO2: cycloaddition-extrusion vs. cycloaddition-insertion. Dalton Transactions, 2009, , 5960.	3.3	58
46	Syntheses, Reactivity and DFT Studies of Groupâ€2 and Group 12 Metal Complexes of Tris(pyrazolyl)methanides Featuring "Free―Pyramidal Carbanions. Chemistry - A European Journal, 2008, 14, 5918-5934.	3.3	57
47	Synthesis and rac-lactide ring-opening polymerisation studies of new alkaline earth tetrahydroborate complexes. Dalton Transactions, 2013, 42, 759-769.	3.3	57
48	Reactivity of Boryl- and Silyl-Substituted Carbenoids toward Alkynes: Insertion and Cycloaddition Chemistry. Organometallics, 2015, 34, 2126-2129.	2.3	57
49	Câ^'C and Câ^'N Coupling Reactions of an Imidotitanium Complex with Isocyanides. Organometallics, 2000, 19, 4784-4794.	2.3	56
50	Group 4 Imido Complexes Stabilized by a Tridentate Diamido-Donor Ligand. Inorganic Chemistry, 2001, 40, 870-877.	4.0	56
51	Lanthanide mono(borohydride) complexes of diamide-diamine donor ligands: novel single site catalysts for the polymerisation of methyl methacrylate. Dalton Transactions, 2005, , 421.	3.3	55
52	Experimental and DFT Studies of Cationic Imido Titanium Alkyls:Â Agostic Interactions and Câ^'H Bond and Solvent Activation Reactions of Isolobal Analogues of Group 4 Metallocenium Cations. Organometallics, 2006, 25, 2806-2825.	2.3	55
53	Synthesis, Structures, and DFT Bonding Analysis of New Titanium Hydrazido(2â^') Complexes. Inorganic Chemistry, 2005, 44, 8442-8458.	4.0	54
54	Synthesis and Reactions of Group 4 Imido Complexes Supported by Cyclooctatetraene Ligands. Organometallics, 2006, 25, 1755-1770.	2.3	54

#	Article	IF	CITATIONS
55	Mâ•NαCycloaddition and Nαâ^'NβInsertion in the Reactions of Titanium Hydrazido Compounds with Alkynes: A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2010, 132, 10484-10497.	13.7	53
56	Reaction Site Diversity in the Reactions of Titanium Hydrazides with Organic Nitriles, Isonitriles and Isocyanates: TiN _α Cycloaddition, TiN _α Insertion and N _α E¿N _β Bond Cleavage. Chemistry - A European Journal, 2011, 17, 265-285.	3.3	52
57	Highly selective trimerisation of MeNC by a novel titanium imido complex containing a tridentate dianionic ligand. Chemical Communications, 1997, , 1555-1556.	4.1	51
58	New Titanium Complexes Containing an Amidinateâ^Imide Supporting Ligand Set:Â Cyclopentadienyl, Alkyl, Borohydride, Aryloxide, and Amide Derivatives. Organometallics, 1998, 17, 3271-3281.	2.3	51
59	Revelations in Dinitrogen Activation and Functionalization by Metal Complexes. Angewandte Chemie - International Edition, 2004, 43, 1186-1189.	13.8	51
60	Theoretical study of the geometric and electronic structures of pseudo-octahedral d0 imido compounds of titanium: the trans influence in mer-[Ti(NR)Cl2(NH3)3] (Râ€=â€But, C6H5 or C6H4NO2-4). Journal of the Chemical Society Dalton Transactions, 1999, , 781-790.	1.1	50
61	A structurally characterised, naked sp3-hybridised carbanion in the zwitterionic imido complex [Ti(NBut){C(Me2pz)3}Cl(THF)] (HMe2pz = 3,5-dimethylpyrazole). Chemical Communications, 2001, , 705-706.	4.1	49
62	Synthesis, Structures and Reactivity of Group 4 Hydrazido Complexes Supported by Calix[4]arene Ligands. Inorganic Chemistry, 2008, 47, 12049-12062.	4.0	49
63	Synthesis and reactions of β-diketiminate-supported complexes with Mg–Fe or Yb–Fe bonds. Chemical Communications, 2013, 49, 3315.	4.1	49
64	A general route to sandwich and half-sandwich titanium imido complexes: X-ray structure of $[Ti(\hat{i}\cdot 4-Me8taa)(NBut)](Me4taa = tetramethyldibenzotetraaza[14]annulene)$. Journal of the Chemical Society Chemical Communications, 1994, , 2007-2008.	2.0	48
65	Cyclopentadienyl, indenyl and bis(cyclopentadienyl) titanium imido compounds. Journal of the Chemical Society Dalton Transactions, 1997, , 293-304.	1.1	48
66	A novel transformation of a zirconium imido compound and the development of a new class of N3donor heteroscorpionate ligand. Chemical Communications, 2006, , 223-225.	4.1	48
67	A Monomeric Organolithium Compound Containing a Free Pyramidal Carbanion in Solution and in the Solid State. Angewandte Chemie - International Edition, 2004, 43, 2521-2524.	13.8	47
68	New Titanium Imido Synthons:  Syntheses and Supramolecular Structures. Inorganic Chemistry, 2005, 44, 2882-2894.	4.0	44
69	Synthesis of TiN thin films from titanium imido complexes. Journal of Materials Chemistry, 2003, 13, 84-87.	6.7	43
70	Scandium and yttrium complexes of the diamide–diamine donor ligand (2-C5H4N)CH2N(CH2CH2NSiMe3)2: chloride, primary and secondary amide, benzamidinate and alkyl functionalised derivatives. Dalton Transactions RSC, 2002, , 1694-1703.	2.3	42
71	Titanium Imido Complexes Supported by Amidinate Ligands:Â Synthesis, Solution Dynamics, and Solid State Structures. Inorganic Chemistry, 1997, 36, 3616-3622.	4.0	41
72	Titanium Hydrazides Supported by Diamide-Amine and Related Ligands: A Combined Experimental and DFT Study. Organometallics, 2008, 27, 6479-6494.	2.3	41

#	Article	IF	CITATIONS
73	Reactions of Cyclopentadienylâ-'Amidinate Titanium Hydrazides with CO ₂ , CS ₂ , and Isocyanates: Tiâ•N _{1±} Cycloaddition, Cycloadditionâ-'Insertion, and Cycloadditionâ-'NNR ₂ Group Transfer Reactions. Organometallics, 2011, 30, 1182-1201.	2.3	41
74	Imidotitanium Tris(pyrazolyl)hydroborates:Â Synthesis, Solution Dynamics, and Solid-State Structure. Inorganic Chemistry, 1996, 35, 1006-1012.	4.0	38
75	Macrocycle-Supported Titanium Complexes with Chelating Imido Ligands:Â Analogues of ansa-Metallocenes. Inorganic Chemistry, 2000, 39, 5483-5491.	4.0	38
76	Cycloaddition reactions of transition metal hydrazides with alkynes and heteroalkynes: coupling of Tiî€NNPh2 with PhCCMe, PhCCH, MeCN and tBuCP. Chemical Communications, 2008, , 5101.	4.1	38
77	Synthesis and structures of calcium and strontium 2,4-di-tert-butylphenolates and their reactivity towards the amine co-initiated ring-opening polymerisation of rac-lactide. Dalton Transactions, 2013, 42, 9294.	3.3	38
78	Cycloaddition Reactions of the Titanium Imide [Ti(NBut){MeC(2-C5H4N)(CH2NSiMe3)2}(py)] with ButCP and MeCN. Organometallics, 2000, 19, 3205-3210.	2.3	37
79	Single and double substrate insertion into the Tiî€N _α bonds of terminal titanium hydrazides. Chemical Communications, 2010, 46, 85-87.	4.1	37
80	The first group 4 metal bis(imido) and tris(imido) complexes. Chemical Science, 2012, 3, 819-824.	7.4	37
81	Electronic Delocalization in Two and Three Dimensions: Differential Aggregation in Indium "Metalloid―Clusters. Angewandte Chemie - International Edition, 2017, 56, 15098-15102.	13.8	37
82	Câ€"H bond activation and Câ€"N coupling reactions of methylacetylenes and allenes with an imidotitanium complex. Chemical Communications, 1998, , 2555-2556.	4.1	36
83	Group 5 Imido Complexes Supported by Diamidoâ^'pyridine Ligands:Â Aryloxide, Amide, Benzamidinate, Alkyl, and Cyclopentadienyl Derivatives. Organometallics, 2001, 20, 3531-3542.	2.3	36
84	Reactions of Neutral and Cationic Diamide-Supported Imido Complexes with CO2 and Other Heterocumulenes:  Issues of Site Selectivity. Organometallics, 2005, 24, 2368-2385.	2.3	35
85	Synthesis and ethylene trimerisation capability of new chromium(ii) and chromium(iii) heteroscorpionate complexes. Dalton Transactions, 2010, 39, 3653.	3.3	35
86	Bis (\hat{l} -cyclopentadienyl)-molybdenum and -tungsten imido complexes: X-ray structures of [Mo(\hat{l} -C5H5)2(NBut)] and [Mo(\hat{l} -C5H4Me)2(NBut)Me]I. Journal of the Chemical Society Chemical Communications, 1992, , 1361-1365.	2.0	34
87	Titanium Imido Complexes of Cyclooctatetraenyl Ligands. Chemistry - A European Journal, 2005, 11, 2111-2124.	3.3	34
88	Tantalizing Chemistry of the Half-Sandwich Silylhydride Complexes of Niobium:Â Identification of Likely Intermediates on the Way to Agostic Complexes. Inorganic Chemistry, 2003, 42, 258-260.	4.0	33
89	Synthesis, Reactivity, and Computational Studies of the Cationic Tungsten Methyl Complex [W(NPh)(N2Npy)Me]+and Related Compounds (N2Npy= MeC(2-C5H4N)(CH2NSiMe3)2). Organometallics, 2004, 23, 4444-4461.	2.3	33
90	Imido Titanium Ethylene Polymerization Catalysts Containing Triazacyclic Ligands. Organometallics, 2006, 25, 3888-3903.	2.3	33

#	Article	IF	CITATIONS
91	Insertions into Azatitanacyclobutenes: New Insights into Three-Component Coupling Reactions Involving Imidotitanium Intermediates. Organometallics, 2008, 27, 2518-2528.	2.3	33
92	A Remarkable Switch from a Diamination to a Hydrohydrazination Catalyst and Observation of an Unprecedented Catalyst Resting State. Angewandte Chemie - International Edition, 2012, 51, 12298-12302.	13.8	33
93	Contrasting reactivity of anionic boron- and gallium-containing NHC analogues: E–C vs. E–M bond formation (E = B, Ga). Chemical Communications, 2010, 46, 8546.	4.1	32
94	Siâ \in "H and Siâ \in "Cl bond activation reactions of titanium hydrazides with silanes and subsequent Tiâ \in "H/Eâ \in "H (E = Si or H) Ïf-bond metathesis. Chemical Communications, 2011, 47, 3147.	4.1	32
95	Site selectivity and reversibility in the reactions of titanium hydrazides with Si–H, Si–X, C–X and H+ reagents: Tiî€Nα 1,2-silane addition, Nβ alkylation, Nα protonation and σ-bond metathesis. Dalton Transactions, 2012, 41, 2277.	3.3	32
96	Unexpected features of stretched Si–Hâ <mo ,="" 2004,="" 952-953.<="" chemical="" communications,="" interactions.="" td="" β-agostic=""><td>4.1</td><td>31</td></mo>	4.1	31
97	Synthesis and Ethylene Polymerization Capability of Metallocene-like Imido Titanium Dialkyl Compounds and Their Reactions with AliBu3. Organometallics, 2006, 25, 5549-5565.	2.3	31
98	Nonâ€Innocent Behaviour of Imido Ligands in the Reactions of Silanes with Halfâ€Sandwich Imido Complexes of Nb and V: A Silane/Imido Coupling Route to Compounds with Nonclassical SiH Interactions. Chemistry - A European Journal, 2008, 14, 296-310.	3.3	31
99	Synthesis, Bonding and Reactivity of a Terminal Titanium Alkylidene Hydrazido Compound. Chemistry - A European Journal, 2013, 19, 4198-4216.	3.3	30
100	Probing the Limits of Alkaline Earth–Transition Metal Bonding: An Experimental and Computational Study. Journal of the American Chemical Society, 2015, 137, 12352-12368.	13.7	30
101	Contrasting Nonclassical Siliconâ^'Hydrogen Interactions in Niobium and Tantalum Half-Sandwich Complexes: Siâ^'H···M Agostic versus Mâ^'H···Siâ^'Cl Interligand Hypervalent Interactions. European Journal of Inorganic Chemistry, 2000, 2000, 1917-1921.	2.0	29
102	Câ^'N Coupling Reactions of Allenes and Methylacetylenes with an Imidotitanium Complex. Organometallics, 2001, 20, 3308-3313.	2.3	29
103	Synthesis, DFT Studies, and Reactions of Scandium and Yttrium Dialkyl Cations Containing Neutral <i>fac</i> -N ₃ and <i>fac</i> -S ₃ Donor Ligands. Organometallics, 2008, 27, 3458-3473.	2.3	29
104	A new and versatile diamide–diamine donor ligand set in early transition metal chemistry. Chemical Communications, 2000, , 1167-1168.	4.1	28
105	New main-group and early transition-metal complexes of mono-pendant arm triazacyclononane ligands. Dalton Transactions RSC, 2001, , 170-180.	2.3	28
106	Evaluation of the relative importance of Tiâ∈"Clâ< Hâ∈"N hydrogen bonds and supramolecular interactions between perfluorophenyl rings in the crystal structures of [Ti(NR)Cl2(NHMe2)2] (R = iPr, C6H5 or) Tj ETQq0 0 0 rg compounds 1â€"3. See http://www.rsc.org/suppdata/cc/b1/b109251k/. Chemical Communications, 2001, ,	gBT /Overlo 4.1	ock 10 Tf 50 28
107	2738-2739. Tiâ•NR vs Tiâ-R′ Functional Group Selectivity in Titanium Imido Alkyl Cations from an Experimental Perspective. Organometallics, 2008, 27, 6096-6110.	2.3	28
108	Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and trans-1,4-isoprene (co-)polymerisations. Dalton Transactions, 2015, 44, 12312-12325.	3.3	28

#	Article	IF	CITATIONS
109	Titanium imido complexes with tetraaza macrocyclic ligands. Journal of the Chemical Society Dalton Transactions, 1998, , 2253-2260.	1.1	26
110	Titanium Imido Complexes with Tetradentate Schiff Base Ligands. Inorganic Chemistry, 1998, 37, 5970-5977.	4.0	26
111	Titanium imido complexes of pendant arm functionalised benzamidinate ligands. Dalton Transactions RSC, 2002, , 4175-4184.	2.3	26
112	New Group 4 Organometallic and Imido Compounds of Diamide-Diamine and Related Dianionic O2N2-Donor Ligands. Organometallics, 2005, 24, 5586-5603.	2.3	26
113	Î ² -Agostic Silylamido and Silyl-Hydrido Compounds of Molybdenum and Tungsten. Inorganic Chemistry, 2009, 48, 9605-9622.	4.0	26
114	Synthesis of \hat{i} -cyclopentadienylidene-4-imidopropylniobium derivatives [Nb(\hat{i} : $ \hat{j}$ -C5H4(CH2)3N)Cl2] and [Nb(\hat{i} : $ \hat{j}$ -C5H4(CH2)3N)(PMe3)Cl2]. Journal of Organometallic Chemistry, 1992, 438, C4-C8.	1.8	25
115	Mono- and bi-nuclear titanium imido complexes supported by aryloxide ligands: fine control by ortho substituents. Journal of the Chemical Society Dalton Transactions, 1997, , 2911-2920.	1.1	25
116	New binuclear alkyl and half-sandwich cyclopentadienyl imido titanium complexes containing acetamidinate and benzamidinate supporting ligands. Journal of Organometallic Chemistry, 1998, 564, 209-214.	1.8	25
117	One- and two-step $[2 + 2]$ cycloaddition reactions of group 4 imides with the phosphaalkyne ButCP. Crystal and molecular structures of $[Zr(\hat{i}-5-C5H5)2(PCButNC6H3Me2-2,6)]$ and $[TiCl2(P2C2But2NBut)(py)]$	4.1	25
118	Titanium tert-Butyl- and Trimethylsilyl-imido Complexes with Monopendant Arm Triazacyclononane Ligands. Inorganic Chemistry, 2001, 40, 820-824.	4.0	25
119	Titanium and Niobium Imido Complexes Derived from Diamidoamine Ligands. Inorganic Chemistry, 2000, 39, 2001-2005.	4.0	24
120	Group 5 Imido Complexes Derived from Diamido-Pyridine Ligands. Inorganic Chemistry, 2001, 40, 3992-4001.	4.0	24
121	Scandium chloride, alkyl and phenyl complexes of diamido-donor ligands. Dalton Transactions RSC, 2002, , 4649-4657.	2.3	24
122	Cyclopentadienyl Titanium Imido Compounds and Their Ethylene Polymerization Capability:  Control of Molecular Weight Distributions by Imido N-Substituents. Organometallics, 2007, 26, 83-92.	2.3	24
123	Synthesis, solid state and DFT structure and olefin polymerization capability of a unique base-free dimeric methyl titanium dication. Chemical Communications, 2010, 46, 3339.	4.1	24
124	Low-coordinate rare-earth complexes of the asymmetric 2,4-di-tert-butylphenolate ligand prepared by redox transmetallation/protolysis reactions, and their reactivity towards ring-opening polymerisation. Dalton Transactions, 2010, 39, 6693.	3.3	24
125	New Sandwich and Half-Sandwich Titanium Hydrazido Compounds. Organometallics, 2011, 30, 2295-2307.	2.3	24
126	Dalton communications. Exchange of organoimido groups at a mononuclear titanium centre and a crystallographic evaluation of the relative structural influences of the NBut, NC6H4Me-4 and NC6H4NO2-4 ligands. Journal of the Chemical Society Dalton Transactions, 1995, , 3743.	1.1	23

#	Article	IF	Citations
127	Neutral and cationic organometallic aluminium and indium complexes of mono-pendant arm triazacyclononane ligands. Dalton Transactions RSC, 2001, , 157-169.	2.3	23
128	New Scandium Borylimido Chemistry: Synthesis, Bonding, and Reactivity. Journal of the American Chemical Society, 2017, 139, 11165-11183.	13.7	23
129	Synthesis and Reactivity of Titanium Hydrazido Complexes Supported by Diamido-Ether Ligands. Organometallics, 2013, 32, 3091-3107.	2.3	22
130	An unprecedented coordination mode for hemilabile pendant-arm 1,4,7-triazacyclononanes and the synthesis of cationic organoaluminium complexes. Chemical Communications, 2000, , 1269-1270.	4.1	21
131	Synthesis and Reactions of a Cyclopentadienyl-Amidinate Titanium <i>tert-</i> Butoxyimido Compound. Organometallics, 2013, 32, 7520-7539.	2.3	21
132	Reactions of Titanium Hydrazides with Silanes and Boranes: N–N Bond Cleavage and N Atom Functionalization. Journal of the American Chemical Society, 2015, 137, 10140-10143.	13.7	21
133	A  direct' relationship between ETi–L bond angle and TiE bond length can exist in [Ti(E)L4] comple	xes (E) Tj	ETOg1 1 0.78
134	Titanium alkoxyimido (Tiî€N–OR) complexes: reductive N–O bond cleavage at the boundary between hydrazide and peroxide ligands. Chemical Communications, 2011, 47, 4926.	4.1	19
135	Synthesis, characterisation and structural studies of amidinate and guanidinate alkaline earth–transition metal bonded complexes. Polyhedron, 2016, 116, 64-75.	2.2	19
136	Molecular and electronic structures of bis[1,4-bis(trimethylsilyl)cyclooctatetraene] sandwich complexes of titanium and zirconium. Journal of the Chemical Society Dalton Transactions, 1994, , 2867.	1.1	18
137	Synthesis and molecular and electronic structure of monomeric [Ti(η8-C8H8)(NBut)]. Chemical Communications, 1998, , 1235-1236.	4.1	18
138	Silyl Hydrides of Tantalum Supported by Cyclopentadienyl-imido Ligand Sets: Syntheses, X-ray, NMR, and DFT Studies. Organometallics, 2008, 27, 5968-5977.	2.3	17
139	Monometallic and Bimetallic Titanium κ ¹ -Amidinate Complexes as Olefin Polymerization Catalysts. Organometallics, 2017, 36, 2167-2181.	2.3	17
140	ansa-ÎCyclopentadienylimide derivatives of niobium. Journal of the Chemical Society Dalton Transactions, 1997, , 2435-2444.	1.1	16
141	New and versatile routes to zirconium imido dichloride compounds. Dalton Transactions, 2005, , 1448.	3.3	16
142	ansa-Linked titanium macrocycle–imido complexes. New Journal of Chemistry, 2000, 24, 575-577.	2.8	15
143	Synthesis and reactivity of the imidotungsten methyl cation [W(N2Npy)(NPh)Me]+: CO2adds to the Wî€NPh bond and does not insert into the Wâ€"Me bond. Chemical Communications, 2002, , 2618-2619.	4.1	15
144	Titanium <i>tert</i> -Butoxyimido Compounds. Inorganic Chemistry, 2011, 50, 12155-12171.	4.0	15

#	Article	IF	CITATIONS
145	Half-sandwich compounds of zirconium(II): the synthesis of [Zr(\hat{l} -6-C7H8)(PMe3)2Cl2]. Journal of the Chemical Society Chemical Communications, 1989, , 908-909.	2.0	14
146	Half-sandwich $\hat{\textbf{l}}$ -cycloheptatri-ene and -enyl derivatives of titanium and zirconium. Journal of the Chemical Society Dalton Transactions, 1992, , 2259-2261.	1.1	14
147	Reactions oftBuCâ [®] P with Cyclooctatetraene-Supported Titanium Imido Complexes. Organometallics, 2006, 25, 3688-3700.	2.3	14
148	Electronic Delocalization in Two and Three Dimensions: Differential Aggregation in Indium "Metalloid―Clusters. Angewandte Chemie, 2017, 129, 15294-15298.	2.0	14
149	(îCyclopentadienyl)imido derivatives of molybdenum and tungsten. Journal of the Chemical Society Dalton Transactions, 1994, , 2851-2859.	1.1	13
150	New titanium imido complexes containing piperazine-based diamido–diamine ligands. Journal of Organometallic Chemistry, 1999, 591, 114-126.	1.8	13
151	Synthesis and Molecular and Electronic Structure of an Unusual Paramagnetic Borohydride Complex Mo(NAr) ₂ (PMe ₃) ₂ (Î- ² -BH ₄). Inorganic Chemistry, 2008, 47, 999-1006.	4.0	13
152	Reactions of a Cyclopentadienyl–Amidinate Titanium Benzimidamido Complex. Organometallics, 2014, 33, 1002-1019.	2.3	13
153	Synthesis, molecular and electronic structure, and reactions of a Zn–Hg–Zn bonded complex. Chemical Communications, 2015, 51, 5743-5746.	4.1	13
154	New Titanium Borylimido Compounds: Synthesis, Structure, and Bonding. Inorganic Chemistry, 2017, 56, 10794-10814.	4.0	12
155	New Group 5 and 6 transition metal imido complexes with monodeprotonated triazacyclononane ligands. Dalton Transactions RSC, 2000, , 4130-4137.	2.3	11
156	Group 1 and mixed Group 1 and 2 metal complexes of dianionic p-tert-butylcalix[4]arenes. Dalton Transactions, 2003, , 2418.	3.3	11
157	Group 5 hydride and borohydride complexes supported by cyclopentadienyl-imido ligand sets. Dalton Transactions, 2014, 43, 188-195.	3.3	11
158	A dimolybdenum complex with an alkyne ligand parallel to the metal–metal bond: synthesis, structure and cluster formation reactions of [Mo2(Âμ-η1,η1-C2Ph2)(Âμ-S)(Âμ-SPri)2Cp2]. Dalton Transactions RSC, 2001, 2601-2610.	2.3	10
159	Magnesium, calcium and zinc [N ₂ N′] heteroscorpionate complexes. Dalton Transactions, 2019, 48, 4124-4138.	3.3	10
160	Titanium imido complexes with 1,3,5-triazacyclohexane ligands: syntheses, solution dynamics and solid state structures. New Journal of Chemistry, 1999, 23, 271-273.	2.8	9
161	Organometallic and related imidotitanium compounds containing a pendant arm functionalised benzamidinate ligand. Journal of Organometallic Chemistry, 2003, 683, 120-130.	1.8	8
162	Imido titanium compounds bearing the 6-dimethylamino-1,4,6-trimethyl-1,4-diazacycloheptane ligand: synthesis, structures, solution dynamics and ethylene polymerisation capability. Dalton Transactions, 2008, , 3301.	3.3	8

#	Article	IF	CITATIONS
163	Tiâ•NR vs Tiâ^'R′ Functional Group Selectivity in Titanium Imido Alkyl Cations from a DFT Perspective. Organometallics, 2008, 27, 6111-6122.	2.3	7
164	Reactions of Titanium Imides and Hydrazides with Boranes. Organometallics, 2017, 36, 3329-3342.	2.3	7
165	Agostic versus Hypervalent Si-H Interactions in Half-Sandwich Complexes of Nb and Ta., 0,, 451-455.		3
166	Synthesis of Titanium Borylimido Compounds Supported by Diamide-Amine Ligands and Their Reactions with Alkynes. Organometallics, 2018, 37, 3558-3572.	2.3	3
167	Agostic versus Hypervalent Si-H Interactions in Half-Sandwich Complexes of Nb and Ta. , 0, , 451-455.		1
168	Larger Aromatic Complexes of the Group 4 Metals., 2021, , .		0