List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331282/publications.pdf Version: 2024-02-01

PENC CAO

#	Article	IF	CITATIONS
1	Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316-319.	27.8	8,542
2	Observation of conducting filament growth in nanoscale resistive memories. Nature Communications, 2012, 3, 732.	12.8	957
3	Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells. ACS Nano, 2014, 8, 362-373.	14.6	663
4	Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nature Communications, 2014, 5, 4232.	12.8	511
5	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	9.0	454
6	Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nature Communications, 2019, 10, 631.	12.8	423
7	Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570, 91-95.	27.8	422
8	Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications, 2018, 9, 979.	12.8	338
9	Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nature Nanotechnology, 2016, 11, 930-935.	31.5	330
10	Domain Dynamics During Ferroelectric Switching. Science, 2011, 334, 968-971.	12.6	320
11	Stable Highâ€Index Faceted Pt Skin on Zigzagâ€Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. Advanced Materials, 2018, 30, 1705515.	21.0	305
12	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	13.7	285
13	Hyperporous Sponge Interconnected by Hierarchical Carbon Nanotubes as a Highâ€Performance Potassium″on Battery Anode. Advanced Materials, 2018, 30, e1802074.	21.0	268
14	Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. Nano Letters, 2017, 17, 3681-3687.	9.1	241
15	Li-free Cathode Materials for High Energy Density Lithium Batteries. Joule, 2019, 3, 2086-2102.	24.0	239
16	A 3D Trilayered CNT/MoSe ₂ /C Heterostructure with an Expanded MoSe ₂ Interlayer Spacing for an Efficient Sodium Storage. Advanced Energy Materials, 2019, 9, 1900567.	19.5	218
17	Revealing the role of defects in ferroelectric switching with atomic resolution. Nature Communications, 2011, 2, 591.	12.8	214
18	Ultrafast Sodium/Potassiumâ€lon Intercalation into Hierarchically Porous Thin Carbon Shells. Advanced Materials, 2019, 31, e1805430.	21.0	214

#	Article	IF	CITATIONS
19	Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes. Journal of the American Chemical Society, 2016, 138, 2838-2848.	13.7	212
20	Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. Journal of Power Sources, 2019, 409, 24-30.	7.8	203
21	Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 17117-17127.	13.7	202
22	Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Central Science, 2018, 4, 1244-1252.	11.3	196
23	Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. Journal of Power Sources, 2017, 342, 175-182.	7.8	181
24	Long-distance propagation of short-wavelength spin waves. Nature Communications, 2018, 9, 738.	12.8	181
25	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	14.6	172
26	Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nature Nanotechnology, 2022, 17, 33-38.	31.5	171
27	Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS ₂ . ACS Nano, 2015, 9, 11296-11301.	14.6	167
28	Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nature Nanotechnology, 2018, 13, 947-952.	31.5	163
29	Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 4807.	12.8	161
30	Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Communications, 2013, 4, .	12.8	152
31	Controlled Synthesis of Core–Shell Carbon@MoS ₂ Nanotube Sponges as Highâ€Performance Battery Electrodes. Advanced Materials, 2016, 28, 10175-10181.	21.0	145
32	Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr ₃ Perovskite Laser. Nano Letters, 2020, 20, 6636-6643.	9.1	145
33	Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe ₂ . Science, 2021, 372, 195-200.	12.6	143
34	Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nature Communications, 2020, 11, 2153.	12.8	142
35	A native oxide high-lê gate dielectric for two-dimensional electronics. Nature Electronics, 2020, 3, 473-478.	26.0	141
36	Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges. Advanced Energy Materials, 2016, 6, 1600490.	19.5	136

#	Article	IF	CITATIONS
37	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie - International Edition, 2019, 58, 14184-14188.	13.8	136
38	Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nature Communications, 2014, 5, 3801.	12.8	135
39	Ultrathin CsPbX ₃ Nanowire Arrays with Strong Emission Anisotropy. Advanced Materials, 2018, 30, e1801805.	21.0	135
40	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	12.8	133
41	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Materials, 2018, 12, 216-222.	18.0	129
42	Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochimica Acta, 2019, 306, 446-453.	5.2	129
43	Monitoring Local Strain Vector in Atomic-Layered MoSe ₂ by Second-Harmonic Generation. Nano Letters, 2017, 17, 7539-7543.	9.1	128
44	Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. Journal of Materials Chemistry A, 2013, 1, 8567.	10.3	123
45	Improved Epitaxy of AlN Film for Deepâ€Ultraviolet Lightâ€Emitting Diodes Enabled by Graphene. Advanced Materials, 2019, 31, e1807345.	21.0	116
46	Seeded growth of large single-crystal copper foils with high-index facets. Nature, 2020, 581, 406-410.	27.8	116
47	Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating. Advanced Materials, 2018, 30, 1702944.	21.0	113
48	3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. Journal of Energy Chemistry, 2021, 55, 355-360.	12.9	113
49	Au Clusters on Pd Nanosheets Selectively Switch the Pathway of Ethanol Electrooxidation: Amorphous/Crystalline Interface Matters. Advanced Energy Materials, 2021, 11, 2100187.	19.5	113
50	Ultrathin PtPdâ€Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. Advanced Materials, 2018, 30, e1802136.	21.0	107
51	Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films. Nature Communications, 2017, 8, 15549.	12.8	104
52	Palladium Single Atoms on TiO ₂ as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angewandte Chemie - International Edition, 2020, 59, 232-236.	13.8	103
53	Electrically Driven Redox Process in Cerium Oxides. Journal of the American Chemical Society, 2010, 132, 4197-4201.	13.7	101
54	In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron. 2010, 41, 301-305.	2.2	100

#	Article	IF	CITATIONS
55	Millimeter-Scale Single-Crystalline Semiconducting MoTe ₂ via Solid-to-Solid Phase Transformation. Journal of the American Chemical Society, 2019, 141, 2128-2134.	13.7	100
56	A Dual Protection System for Heterostructured 3D CNT/CoSe ₂ /C as High Areal Capacity Anode for Sodium Storage. Advanced Science, 2020, 7, 1902907.	11.2	97
57	Low Residual Carrier Concentration and High Mobility in 2D Semiconducting Bi ₂ O ₂ Se. Nano Letters, 2019, 19, 197-202.	9.1	95
58	Atomic-Scale Measurement of Flexoelectric Polarization at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>SrTiO</mml:mi></mml:mrow><mml:mn>3Dislocations. Physical Review Letters, 2018, 120, 267601.</mml:mn></mml:msub></mml:mrow></mml:math 	1m 1:m n> </td <td>mmi:msub><</td>	mmi:msub><
59	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2107638.	21.0	91
60	Sodiation <i>via</i> Heterogeneous Disproportionation in FeF ₂ Electrodes for Sodium-Ion Batteries. ACS Nano, 2014, 8, 7251-7259.	14.6	89
61	Layered-Structure SbPO ₄ /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries. ACS Nano, 2018, 12, 12869-12878.	14.6	87
62	Highâ€Brightness Blue Lightâ€Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer. Advanced Materials, 2018, 30, e1801608.	21.0	87
63	Grapheneâ€Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithiumâ€Ion Battery. Advanced Materials, 2017, 29, 1703882.	21.0	85
64	SnP ₂ O ₇ Covered Carbon Nanosheets as a Longâ€Life and Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1804672.	14.9	84
65	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nature Materials, 2021, 20, 43-48.	27.5	84
66	Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nature Chemistry, 2019, 11, 730-736.	13.6	82
67	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mi mathvariant="normal">a<mml:mrow><mml:mn>2</mml:mn><mml:mo>/</mml:mo><mml:mn>3mathvariant="normal">S<mml:msub><mml:mi< td=""><td>nl:೫17><td>nm<mark>80</mark> ۱ml:mrow><!--</td--></td></td></mml:mi<></mml:msub></mml:mn></mml:mrow></mml:mi </mml:msub></mml:mi </mml:mrow>	nl:೫17> <td>nm<mark>80</mark> ۱ml:mrow><!--</td--></td>	nm <mark>80</mark> ۱ml:mrow> </td
68	mathvariant="normal">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	11:mn>12.8	iml:mrow>80
69	Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films. Physical Review Letters, 2020, 124, 027203.	7.8	80
70	Room-Temperature Polar Ferromagnet ScFeO ₃ Transformed from a High-Pressure Orthorhombic Perovskite Phase. Journal of the American Chemical Society, 2014, 136, 15291-15299.	13.7	78
71	Tunable Free-Standing Core–Shell CNT@MoSe ₂ Anode for Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 14622-14631.	8.0	78
72	High-Yield Production of MoS ₂ and WS ₂ Quantum Sheets from Their Bulk Materials. Nano Letters, 2017, 17, 7767-7772.	9.1	77

#	Article	IF	CITATIONS
73	A three-dimensional interconnected V ₆ O ₁₃ nest with a V ⁵⁺ -rich state for ultrahigh Zn ion storage. Journal of Materials Chemistry A, 2020, 8, 10370-10376.	10.3	77
74	Ferroic domains regulate photocurrent in single-crystalline CH3NH3PbI3 films self-grown on FTO/TiO2 substrate. Npj Quantum Materials, 2018, 3, .	5.2	76
75	Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Applied Physics Letters, 2019, 114, .	3.3	76
76	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	13.7	75
77	Toroidal polar topology in strained ferroelectric polymer. Science, 2021, 371, 1050-1056.	12.6	74
78	Enhancement of Heat Dissipation in Ultraviolet Lightâ€Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer. Advanced Materials, 2019, 31, e1901624.	21.0	72
79	Core–Shell FeSe ₂ /C Nanostructures Embedded in a Carbon Framework as a Free Standing Anode for a Sodium Ion Battery. Small, 2020, 16, e2002200.	10.0	72
80	Product-Specific Active Site Motifs of Cu for Electrochemical CO2 Reduction. CheM, 2021, 7, 406-420.	11.7	72
81	Current-controlled propagation of spin waves in antiparallel, coupled domains. Nature Nanotechnology, 2019, 14, 691-697.	31.5	71
82	Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. Journal of Materials Chemistry A, 2020, 8, 2453-2462.	10.3	71
83	In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures. Nano Energy, 2017, 32, 302-309.	16.0	69
84	Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. Science Bulletin, 2017, 62, 1173-1176.	9.0	69
85	Densification by Compaction as an Effective Lowâ€Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co ₃ O ₄ Sponge. Advanced Energy Materials, 2018, 8, 1702981.	19.5	69
86	Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 4016-4025.	13.7	69
87	Schottky Barrierâ€Induced Surface Electric Field Boosts Universal Reduction of NO _{<i>x</i>} ^{â^'} in Water to Ammonia. Angewandte Chemie - International Edition, 2021, 60, 20711-20716.	13.8	68
88	Van der Waals integration of high-l [°] perovskite oxides and two-dimensional semiconductors. Nature Electronics, 2022, 5, 233-240.	26.0	68
89	Intermetallic Pd ₃ Pb Nanoplates Enhance Oxygen Reduction Catalysis with Excellent Methanol Tolerance. Small Methods, 2018, 2, 1700331.	8.6	66
90	Constructing CsPbBr ₃ Cluster Passivatedâ€Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2019, 29, 1809180.	14.9	64

#	Article	IF	CITATIONS
91	Interlayer Decoupling in 30° Twisted Bilayer Graphene Quasicrystal. ACS Nano, 2020, 14, 1656-1664.	14.6	64
92	Rice husk derived carbon–silica composites as anodes for lithium ion batteries. RSC Advances, 2014, 4, 64744-64746.	3.6	62
93	Switching Vertical to Horizontal Graphene Growth Using Faraday Cageâ€Assisted PECVD Approach for Highâ€Performance Transparent Heating Device. Advanced Materials, 2018, 30, 1704839.	21.0	62
94	Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nature Communications, 2016, 7, 11318.	12.8	61
95	Atomic Scale Structure Changes Induced by Charged Domain Walls in Ferroelectric Materials. Nano Letters, 2013, 13, 5218-5223.	9.1	59
96	Molecular Beam Epitaxy and Electronic Structure of Atomically Thin Oxyselenide Films. Advanced Materials, 2019, 31, e1901964.	21.0	59
97	High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS ₂ . Nano Letters, 2016, 16, 5582-5588.	9.1	58
98	Direct Observations of Retention Failure in Ferroelectric Memories. Advanced Materials, 2012, 24, 1106-1110.	21.0	56
99	In Situ Oxygen Doping of Monolayer MoS ₂ for Novel Electronics. Small, 2020, 16, e2004276.	10.0	54
100	Catalystâ€Free Synthesis of Few‣ayer Graphdiyne Using a Microwaveâ€Induced Temperature Gradient at a Solid/Liquid Interface. Advanced Functional Materials, 2020, 30, 2001396.	14.9	54
101	Ultrahigh Photocatalytic Rate at a Singleâ€Metalâ€Atomâ€Oxide. Advanced Materials, 2019, 31, e1903491.	21.0	53
102	General Protocol for the Accurate Prediction of Molecular ¹³ C/ ¹ H NMR Chemical Shifts via Machine Learning Augmented DFT. Journal of Chemical Information and Modeling, 2020, 60, 3746-3754.	5.4	53
103	Defect-Induced Hedgehog Polarization States in Multiferroics. Physical Review Letters, 2018, 120, 137602.	7.8	52
104	Heterojunctionâ€Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. Angewandte Chemie - International Edition, 2021, 60, 25766-25770.	13.8	52
105	Giant Electroresistance in Ferroionic Tunnel Junctions. IScience, 2019, 16, 368-377.	4.1	51
106	Epitaxial array of Fe3O4 nanodots for high rate high capacity conversion type lithium ion batteries electrode with long cycling life. Nano Energy, 2020, 74, 104876.	16.0	51
107	Structure Tracking Aided Design and Synthesis of Li ₃ V ₂ (PO ₄) ₃ Nanocrystals as High-Power Cathodes for Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 5712-5718.	6.7	50
108	Thicknessâ€Dependent Inâ€Plane Polarization and Structural Phase Transition in van der Waals Ferroelectric CuInP ₂ S ₆ . Small, 2020, 16, e1904529.	10.0	50

#	Article	IF	CITATIONS
109	Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nature Communications, 2021, 12, 2054.	12.8	50
110	Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nature Photonics, 2021, 15, 510-515.	31.4	50
111	Atomic imaging of mechanically induced topological transition of ferroelectric vortices. Nature Communications, 2020, 11, 1840.	12.8	49
112	Upgrading Electrode/Electrolyte Interphases via Polyamide-Based Quasi-Solid Electrolyte for Long-Life Nickel-Rich Lithium Metal Batteries. ACS Energy Letters, 0, , 1280-1289.	17.4	49
113	Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy, 2018, 184, 177-187.	1.9	47
114	High-Mobility Flexible Oxyselenide Thin-Film Transistors Prepared by a Solution-Assisted Method. Journal of the American Chemical Society, 2020, 142, 2726-2731.	13.7	47
115	Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary ondition Engineering. Advanced Materials, 2017, 29, 1701475.	21.0	47
116	Measuring phonon dispersion at an interface. Nature, 2021, 599, 399-403.	27.8	47
117	Scaling-up Atomically Thin Coplanar Semiconductor–Metal Circuitry via Phase Engineered Chemical Assembly. Nano Letters, 2019, 19, 6845-6852.	9.1	46
118	Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism. Energy Storage Materials, 2021, 35, 62-69.	18.0	46
119	Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO3. Ultramicroscopy, 2018, 184, 217-224.	1.9	45
120	Reaction Mechanism and Structural Evolution of Fluorographite Cathodes in Solid tate K/Na/Li Batteries. Advanced Materials, 2021, 33, e2006118.	21.0	44
121	Anomalous Hall effect and magnetic orderings in nanothick <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">V <mml:mn>5 </mml:mn> </mml:mi </mml:msub> <mml:msub> <mml:mi mathvariant="normal">S <mml:mn> 8 </mml:mn> </mml:mi </mml:msub> </mml:mrow> .</mml:math 	3.2	43
122	Physical Review B, 2017, 26, . Grouping Effect of Single Nickelâ^'N ₄ Sites in Nitrogenâ€Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. Angewandte Chemie - International Edition, 2018, 57, 15194-15198.	13.8	43
123	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	10.3	43
124	Atomic structure and migration dynamics of MoS2/LixMoS2 interface. Nano Energy, 2018, 48, 560-568.	16.0	42
125	General Decomposition Pathway of Organic–Inorganic Hybrid Perovskites through an Intermediate Superstructure and its Suppression Mechanism. Advanced Materials, 2020, 32, e2001107.	21.0	42
126	Highly Flexible and Twistable Freestanding Single Crystalline Magnetite Film with Robust Magnetism. Advanced Functional Materials, 2020, 30, 2003495.	14.9	42

#	Article	IF	CITATIONS
127	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	30.8	42
128	Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials. Nature Communications, 2021, 12, 5886.	12.8	42
129	In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. Nano Energy, 2019, 60, 424-431.	16.0	41
130	Conceptual Framework for Dislocation-Modified Conductivity in Oxide Ceramics Deconvoluting Mesoscopic Structure, Core, and Space Charge Exemplified for SrTiO ₃ . ACS Nano, 2021, 15, 9355-9367.	14.6	41
131	Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18954-18961.	7.1	41
132	Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell. Nano Energy, 2020, 70, 104552.	16.0	41
133	Reticulate Dualâ€Nanowire Aerogel for Multifunctional Applications: a Highâ€Performance Strain Sensor and a High Areal Capacity Rechargeable Anode. Advanced Functional Materials, 2019, 29, 1807467.	14.9	40
134	Identifying the Conversion Mechanism of NiCo ₂ O ₄ during Sodiation–Desodiation Cycling by In Situ TEM. Advanced Functional Materials, 2017, 27, 1606163.	14.9	39
135	Quasiâ€2D Growth of Aluminum Nitride Film on Graphene for Boosting Deep Ultraviolet Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001272.	11.2	37
136	Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy. Nature Communications, 2020, 11, 541.	12.8	37
137	Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway. Nature Communications, 2021, 12, 5516.	12.8	36
138	Challenges, myths, and opportunities of electron microscopy on halide perovskites. Journal of Applied Physics, 2020, 128, .	2.5	35
139	Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Science Advances, 2021, 7, .	10.3	35
140	Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3. Journal of Applied Physics, 2012, 111, .	2.5	34
141	Single-Crystal α-Fe ₂ O ₃ with Engineered Exposed (001) Facet for High-Rate, Long-Cycle-Life Lithium-Ion Battery Anode. Inorganic Chemistry, 2019, 58, 12724-12732.	4.0	34
142	Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Science Bulletin, 2020, 65, 1643-1649.	9.0	34
143	Electric Current Aligning Component Units during Graphene Fiber Joule Heating. Advanced Functional Materials, 2022, 32, 2103493.	14.9	33
144	Anisotropic moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures. Nature Communications, 2021, 12, 3947.	12.8	33

#	Article	lF	CITATIONS
145	Computational exploration of magnesium-decorated carbon nitride (g-C3N4) monolayer as advanced energy storage materials. International Journal of Hydrogen Energy, 2021, 46, 21739-21747.	7.1	33
146	Atomic-Scale Tracking of a Phase Transition from Spinel to Rocksalt in Lithium Manganese Oxide. Chemistry of Materials, 2017, 29, 1006-1013.	6.7	32
147	Stable interstitial layer to alleviate fatigue fracture of high nickel cathode for lithium-ion batteries. Journal of Power Sources, 2018, 376, 200-206.	7.8	32
148	Surface and Near-Surface Engineering of PtCo Nanowires at Atomic Scale for Enhanced Electrochemical Sensing and Catalysis. Chemistry of Materials, 2018, 30, 6660-6667.	6.7	32
149	Universal Imaging of Full Strain Tensor in 2D Crystals with Thirdâ€Harmonic Generation. Advanced Materials, 2019, 31, e1808160.	21.0	32
150	Defect-Laden MoSe ₂ Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts. Small, 2017, 13, 1700565.	10.0	31
151	Atomic mechanism of strong interactions at the graphene/sapphire interface. Nature Communications, 2019, 10, 5013.	12.8	31
152	Subunit cell–level measurement of polarization in an individual polar vortex. Science Advances, 2019, 5, eaav4355.	10.3	31
153	Sub-Nanometer Pt Clusters on Defective NiFe LDH Nanosheets as Trifunctional Electrocatalysts for Water Splitting and Rechargeable Hybrid Sodium–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26891-26903.	8.0	31
154	Verticalâ€Grapheneâ€Reinforced Titanium Alloy Bipolar Plates in Fuel Cells. Advanced Materials, 2022, 34, e2110565.	21.0	31
155	Carbon Fibers Embedded With Iron Selenide (Fe3Se4) as Anode for High-Performance Sodium and Potassium Ion Batteries. Frontiers in Chemistry, 2020, 8, 408.	3.6	30
156	Wafer‣cale Oxygenâ€Doped MoS ₂ Monolayer. Small Methods, 2021, 5, e2100091.	8.6	30
157	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ PbI ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	13.7	29
158	Broad‣pectralâ€Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in αâ€MoO 3. Advanced Materials, 2020, 32, 2002014.	21.0	29
159	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie, 2019, 131, 14322-14326.	2.0	28
160	Robust production of 2D quantum sheets from bulk layered materials. Materials Horizons, 2019, 6, 1416-1424.	12.2	28
161	Intrinsic Wettability in Pristine Graphene. Advanced Materials, 2022, 34, e2103620.	21.0	28
162	Synthesis and Structure of Perovskite ScMnO ₃ . Inorganic Chemistry, 2013, 52, 9692-9697.	4.0	27

#	Article	IF	CITATIONS
163	Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001483.	14.9	27
164	Flexible hybrid carbon nanotube sponges embedded with SnS ₂ from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. RSC Advances, 2016, 6, 30098-30105.	3.6	26
165	Tracking sodium migration in TiS ₂ using <i>in situ</i> TEM. Nanoscale, 2019, 11, 7474-7480.	5.6	26
166	Palladium Single Atoms on TiO ₂ as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angewandte Chemie, 2020, 132, 238-242.	2.0	26
167	Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications. ACS Nano, 2020, 14, 15327-15335.	14.6	26
168	Electrode engineering for improving resistive switching performance in single crystalline CeO2 thin films. Solid-State Electronics, 2012, 72, 4-7.	1.4	25
169	Computational Evaluation of Li-doped g-C2N Monolayer as Advanced Hydrogen Storage Media. International Journal of Hydrogen Energy, 2022, 47, 3625-3632.	7.1	25
170	Large‣cale Hf _{0.5} Zr _{0.5} O ₂ Membranes with Robust Ferroelectricity. Advanced Materials, 2022, 34, e2109889.	21.0	25
171	Origin of the emergence of higher T c than bulk in iron chalcogenide thin films. Scientific Reports, 2017, 7, 9994.	3.3	24
172	Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nature Communications, 2021, 12, 1179.	12.8	24
173	Ultrathin RuRh@(RuRh)O ₂ core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 15746-15751.	10.3	24
174	Substitutionally Doped MoSe ₂ for Highâ€Performance Electronics and Optoelectronics. Small, 2021, 17, e2102855.	10.0	24
175	Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light: Science and Applications, 2022, 11, 88.	16.6	24
176	A Generic Sacrificial Layer for Wideâ€Range Freestanding Oxides with Modulated Magnetic Anisotropy. Advanced Functional Materials, 2022, 32, .	14.9	24
177	Realization of Quantum Hall Effect in Chemically Synthesized InSe. Advanced Functional Materials, 2019, 29, 1904032.	14.9	23
178	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Applied Materials & Interfaces, 2021, 13, 29926-29935.	8.0	23
179	Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries. Electrochimica Acta, 2017, 235, 304-310.	5.2	22
180	Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano Research, 2018, 11, 4082-4089.	10.4	22

#	Article	IF	CITATIONS
181	Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Research, 2019, 12, 149-157.	10.4	22
182	Unraveling Atomically Irreversible Cation Migration in Sodium Layered Oxide Cathodes. Journal of Physical Chemistry Letters, 2020, 11, 5464-5470.	4.6	22
183	Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. Physical Review Letters, 2021, 126, 136001.	7.8	22
184	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.	9.1	22
185	Computational evaluation of Mg-decorated g-CN as clean energy gas storage media. International Journal of Hydrogen Energy, 2021, 46, 35130-35136.	7.1	22
186	Switching magnon chirality in artificial ferrimagnet. Nature Communications, 2022, 13, 1264.	12.8	22
187	A 3-D binder-free nanoporous anode for a safe and stable charging of lithium ion batteries. Materials Research Bulletin, 2017, 93, 1-8.	5.2	21
188	Metal Organic Frameworkâ€Derived Cobalt Dicarboxylate as a Highâ€Capacity Anode Material for Lithiumâ€ion Batteries. Energy Technology, 2017, 5, 637-642.	3.8	21
189	Accurate predictions of aqueous solubility of drug molecules <i>via</i> the multilevel graph convolutional network (MGCN) and SchNet architectures. Physical Chemistry Chemical Physics, 2020, 22, 23766-23772.	2.8	21
190	11B NMR Chemical Shift Predictions via Density Functional Theory and Gauge-Including Atomic Orbital Approach: Applications to Structural Elucidations of Boron-Containing Molecules. ACS Omega, 2019, 4, 12385-12392.	3.5	20
191	Large-scale multiferroic complex oxide epitaxy with magnetically switched polarization enabled by solution processing. National Science Review, 2020, 7, 84-91.	9.5	20
192	Eightfold fermionic excitation in a charge density wave compound. Physical Review B, 2020, 102, .	3.2	20
193	Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy, 2020, 77, 105299.	16.0	20
194	Two-Dimensional Bi ₂ Sr ₂ CaCu ₂ O _{8+δ} Nanosheets for Ultrafast Photonics and Optoelectronics. ACS Nano, 2021, 15, 8919-8929.	14.6	20
195	Engineering polar vortex from topologically trivial domain architecture. Nature Communications, 2021, 12, 4620.	12.8	20
196	Computational evaluation of superalkali-decorated graphene nanoribbon as advanced hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46, 24510-24516.	7.1	20
197	Automatic classification of rural building characteristics using deep learning methods on oblique photography. Building Simulation, 2022, 15, 1161-1174.	5.6	20
198	Electroforming and endurance behavior of Al/Pr0.7Ca0.3MnO3/Pt devices. Applied Physics Letters, 2011, 99, .	3.3	19

#	Article	IF	CITATIONS
199	In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H ₂ V ₃ O ₈ Nanorods. ACS Energy Letters, 2019, 4, 2081-2090.	17.4	19
200	Exploration of the Dehydrogenation Pathways of Ammonia Diborane and Diammoniate of Diborane by Molecular Dynamics Simulations Using Reactive Force Fields. Journal of Physical Chemistry A, 2020, 124, 1698-1704.	2.5	19
201	Large-Scale Vertical 1T′/2H MoTe ₂ Nanosheet-Based Heterostructures for Low Contact Resistance Transistors. ACS Applied Nano Materials, 2020, 3, 10411-10417.	5.0	19
202	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for Highâ€Performance Deepâ€Ultraviolet Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2018, 5, 1800662.	3.7	18
203	Atomic-Scale Probing of Reversible Li Migration in 1T-V _{1+<i>x</i>} Se ₂ and the Interactions between Interstitial V and Li. Nano Letters, 2018, 18, 6094-6099.	9.1	18
204	Study of damage generation induced by focused helium ion beam in silicon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	18
205	Direct observation of weakened interface clamping effect enabled ferroelastic domain switching. Acta Materialia, 2019, 171, 184-189.	7.9	18
206	Selective doping to relax glassified grain boundaries substantially enhances the ionic conductivity of LiTi2(PO4)3 glass-ceramic electrolytes. Journal of Power Sources, 2020, 449, 227574.	7.8	18
207	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. Nano Letters, 2020, 20, 2175-2182.	9.1	18
208	Oxygen Reduction Reaction Catalyzed by Carbon-Supported Platinum Few-Atom Clusters: Significant Enhancement by Doping of Atomic Cobalt. Research, 2020, 2020, 9167829.	5.7	18
209	Identification of Copper Surface Index by Optical Contrast. Advanced Materials Interfaces, 2018, 5, 1800377.	3.7	17
210	Low Threshold Fabry–Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets. Small, 2018, 14, e1801938.	10.0	17
211	Atomic-level tunnel engineering of todorokite MnO2 for precise evaluation of lithium storage mechanisms by in situ transmission electron microscopy. Nano Energy, 2019, 63, 103840.	16.0	17
212	Antiferromagnetic Magnetic Polaron Formation and Optical Properties of CVD-Grown Mn-Doped Zinc Stannate (ZTO). ACS Applied Electronic Materials, 2020, 2, 1679-1688.	4.3	17
213	Atomic scale insight into the fundamental mechanism of Mn doped LiFePO ₄ . Sustainable Energy and Fuels, 2020, 4, 2741-2751.	4.9	17
214	Modeling and simulation of high-efficiency GaAs PIN solar cells. Journal of Computational Electronics, 2021, 20, 310-316.	2.5	17
215	Studying Plasmon Dispersion of MXene for Enhanced Electromagnetic Absorption. Advanced Materials, 2022, 34, e2201120.	21.0	17
216	Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Materials Today, 2022, 58, 238-274.	14.2	17

#	Article	IF	CITATIONS
217	Probing Far-Infrared Surface Phonon Polaritons in Semiconductor Nanostructures at Nanoscale. Nano Letters, 2019, 19, 5070-5076.	9.1	16
218	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12, 1888-1893.	10.4	16
219	Manipulation of surface phonon polaritons in SiC nanorods. Science Bulletin, 2020, 65, 820-826.	9.0	16
220	Record thermopower found in an IrMn-based spintronic stack. Nature Communications, 2020, 11, 2023.	12.8	16
221	Atomicâ€Precision Repair of a Few‣ayer 2Hâ€MoTe ₂ Thin Film by Phase Transition and Recrystallization Induced by a Heterophase Interface. Advanced Materials, 2020, 32, e2000236.	21.0	16
222	First Atomic-Scale Insight into Degradation in Lithium Iron Phosphate Cathodes by Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 4608-4617.	4.6	16
223	Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
224	Ultrafast Internal Exciton Dissociation through Edge States in MoS ₂ Nanosheets with Diffusion Blocking. Nano Letters, 2022, 22, 5651-5658.	9.1	16
225	Higher-order harmonic resonances and mechanical properties of individual cadmium sulphide nanowires measured by in situ transmission electron microscopy. Journal of Electron Microscopy, 2010, 59, 285-289.	0.9	15
226	Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO ₃ Ultrathin Films via Bi Nonstoichiometry. ACS Applied Materials & Interfaces, 2018, 10, 43792-43801.	8.0	15
227	Strain-Inhibited Electromigration of Oxygen Vacancies in LaCoO ₃ . ACS Applied Materials & Interfaces, 2019, 11, 36800-36806.	8.0	15
228	In Situ Visualization of Interfacial Sodium Transport and Electrochemistry between Few‣ayer Phosphorene. Small Methods, 2019, 3, 1900061.	8.6	15
229	Toward Accurate Predictions of Atomic Properties via Quantum Mechanics Descriptors Augmented Graph Convolutional Neural Network: Application of This Novel Approach in NMR Chemical Shifts Predictions. Journal of Physical Chemistry Letters, 2020, 11, 9812-9818.	4.6	15
230	Artificially engineered nanostrain in FeSexTe1-x superconductor thin films for supercurrent enhancement. NPG Asia Materials, 2020, 12, .	7.9	15
231	Direct Growth of Continuous and Uniform MoS ₂ Film on SiO ₂ /Si Substrate Catalyzed by Sodium Sulfate. Journal of Physical Chemistry Letters, 2020, 11, 1570-1577.	4.6	15
232	Transferâ€Enabled Fabrication of Graphene Wrinkle Arrays for Epitaxial Growth of AlN Films. Advanced Materials, 2022, 34, e2105851.	21.0	15
233	Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures. Nature Communications, 2021, 12, 7258.	12.8	15
234	Regulating Crystal Facets of MnO2 for Enhancing Peroxymonosulfate Activation to Degrade Pollutants: Performance and Mechanism. Catalysts, 2022, 12, 342.	3.5	15

#	Article	IF	CITATIONS
235	Interfacial modulation of spin pumping in YIG/Pt. Physical Review B, 2020, 102, .	3.2	14
236	A Highly Strained Phase in PbZr 0.2 Ti 0.8 O 3 Films with Enhanced Ferroelectric Properties. Advanced Science, 2021, 8, 2003582.	11.2	14
237	Three dimensional band-filling control of complex oxides triggered by interfacial electron transfer. Nature Communications, 2021, 12, 2447.	12.8	14
238	Engineering of atomic-scale flexoelectricity at grain boundaries. Nature Communications, 2022, 13, 216.	12.8	14
239	Enhancing the photovoltaic performance of GaAs/graphene Schottky junction solar cells by interfacial modification with self assembled alkyl thiol monolayer. Journal of Materials Chemistry A, 2018, 6, 17361-17370.	10.3	13
240	Inhomogeneous-strain-induced magnetic vortex cluster in one-dimensional manganite wire. Science Bulletin, 2020, 65, 201-207.	9.0	13
241	Unveiling the Fine Structural Distortion of Atomically Thin Bi ₂ O ₂ Se by Thirdâ€Harmonic Generation. Advanced Materials, 2020, 32, e2002831.	21.0	13
242	Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes. IScience, 2020, 23, 100898.	4.1	13
243	Role of oxygen vacancies in colossal polarization in SmFeO _{3â^î^} thin films. Science Advances, 2022, 8, eabm8550.	10.3	13
244	Phase field simulation of charged interface formation during ferroelectric switching. Acta Materialia, 2016, 112, 285-294.	7.9	12
245	Towards an Accurate Prediction of Nitrogen Chemical Shifts by Density Functional Theory and Gaugeâ€Including Atomic Orbital. Advanced Theory and Simulations, 2019, 2, 1800148.	2.8	12
246	Nanocable with thick active intermediate layer for stable and high-areal-capacity sodium storage. Nano Energy, 2020, 78, 105265.	16.0	12
247	Atomicâ€Scale Control of Electronic Structure and Ferromagnetic Insulating State in Perovskite Oxide Superlattices by Longâ€Range Tuning of BO ₆ Octahedra. Advanced Functional Materials, 2020, 30, 2001984.	14.9	12
248	Bending Strain-Tailored Magnetic and Electronic Transport Properties of Reactively Sputtered γ′-Fe ₄ N/Muscovite Epitaxial Heterostructures toward Flexible Spintronics. ACS Applied Materials & Interfaces, 2020, 12, 27394-27404.	8.0	12
249	Atomic origin of spin-valve magnetoresistance at the SrRuO3 grain boundary. National Science Review, 2020, 7, 755-762.	9.5	12
250	Atomic-Scale insight into the reversibility of polar order in ultrathin epitaxial Nb:SrTiO3/BaTiO3 heterostructure and its implication to resistive switching. Acta Materialia, 2020, 188, 23-29.	7.9	12
251	Grapheneâ€Nanorod Enhanced Quasiâ€Van Der Waals Epitaxy for High Indium Composition Nitride Films. Small, 2021, 17, e2100098.	10.0	12
252	Schottky Barrierâ€Induced Surface Electric Field Boosts Universal Reduction of NO x â^' in Water to Ammonia. Angewandte Chemie, 2021, 133, 20879-20884.	2.0	12

#	Article	IF	CITATIONS
253	Understanding the Dehydrogenation Pathways of Ammonium Octahydrotriborate (NH 4 B 3 H 8) by Molecular Dynamics Simulations with the Reactive Force Field (ReaxFF). Advanced Theory and Simulations, 2020, 3, 2000139.	2.8	11
254	Elucidating the Roles of Hole Transport Layers in pâ€iâ€n Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 2000149.	5.1	11
255	Lattice-resolution visualization of anisotropic sodiation degrees and revelation of sodium storage mechanisms in todorokite-type MnO2 with in-situ TEM. Energy Storage Materials, 2021, 37, 345-353.	18.0	11
256	Adhesion-Enhanced Vertically Oriented Graphene on Titanium-Covered Quartz Glass toward High-Stability Light-Dimming-Related Applications. ACS Nano, 2021, 15, 10514-10524.	14.6	11
257	Superelastic oxide micropillars enabled by surface tension–modulated 90° domain switching with excellent fatigue resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
258	Ferroelectric Proximity Effect and Topological Hall Effect in SrRuO ₃ /BiFeO ₃ Multilayers. ACS Applied Materials & Interfaces, 2022, 14, 6194-6202.	8.0	11
259	Green CdSe/CdSeS Core/Alloyedâ€Crown Nanoplatelets Achieve Unity Photoluminescence Quantum Yield over a Broad Emission Range. Advanced Optical Materials, 2022, 10, .	7.3	11
260	Tuning properties of columnar nanocomposite oxides. Applied Physics Letters, 2013, 103, 043112.	3.3	10
261	Ferroelectric Problem beyond the Conventional Scaling Law. Physical Review Letters, 2018, 121, 135702.	7.8	10
262	Synthesis and Characterization of CuZnSe ₂ Nanocrystals in Wurtzite, Zinc Blende, and Core–Shell Polytypes. Chemistry of Materials, 2019, 31, 10085-10093.	6.7	10
263	Relaxation and transfer of photoexcited electrons at a coplanar few-layer 1 T′/2H-MoTe2 heterojunction. Communications Materials, 2020, 1, .	6.9	10
264	Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. Chemistry of Materials, 2021, 33, 2506-2515.	6.7	10
265	Atomic‣cale Mechanism of Spontaneous Polarity Inversion in AlN on Nonpolar Sapphire Substrate Grown by MOCVD. Small, 2022, 18, e2200057.	10.0	10
266	Atomic Mechanism of Strain Alleviation and Dislocation Reduction in Highly Mismatched Remote Heteroepitaxy Using a Graphene Interlayer. Nano Letters, 2022, 22, 3364-3371.	9.1	10
267	Electronic-structure tuning of honeycomb layered oxide cathodes for superior performance. Acta Materialia, 2020, 199, 34-41.	7.9	9
268	Stabilization of ferroelastic charged domain walls in self-assembled BiFeO3 nanoislands. Journal of Applied Physics, 2020, 128, 124103.	2.5	9
269	Direct Observation of Li Migration into V ₅ S ₈ : Order to Antisite Disorder Intercalation Followed by the Topotactic-Based Conversion Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36320-36328.	8.0	9
270	Graphene-induced crystal-healing of AlN film by thermal annealing for deep ultraviolet light-emitting diodes. Applied Physics Letters, 2020, 117, .	3.3	9

#	Article	IF	CITATIONS
271	A systematic benchmarking of ³¹ P and ¹⁹ F <scp>NMR</scp> chemical shift predictions using different <scp>DFT</scp> / <scp>GIAO</scp> methods and applying linear regression to improve the prediction accuracy. International Journal of Quantum Chemistry, 2021, 121, e26482.	2.0	9
272	A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN). Physical Chemistry Chemical Physics, 2021, 23, 13242-13249.	2.8	9
273	Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride films from Fe fluxes. Nanoscale, 2021, 13, 11223-11231.	5.6	9
274	Confined-path interference suppressed quantum correction on weak antilocalization effect in a BiSbTeSe2 topological insulator. Applied Physics Letters, 2018, 112, .	3.3	8
275	Atomic-scale structural and chemical evolution of Li3V2(PO4)3 cathode cycled at high voltage window. Nano Research, 2019, 12, 1675-1681.	10.4	8
276	Giant pattern evolution in third-harmonic generation of strained monolayer WS2 at two-photon excitonic resonance. Nano Research, 2020, 13, 3235-3240.	10.4	8
277	Understanding the Intraâ€Molecular Proton Transfer of Octahydrotriborate and Exploring the Dehydrogenation Pathways of NH ₄ B ₃ H ₈ by DFT Calculations. Advanced Theory and Simulations, 2021, 4, 2000287.	2.8	8
278	Accurate predictions of drugs aqueous solubility via deep learning tools. Journal of Molecular Structure, 2022, 1249, 131562.	3.6	8
279	Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO ₄ Films. Small, 2022, 18, e2107540.	10.0	8
280	Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. Science China Materials, 2022, 65, 559-592.	6.3	8
281	Reversible hydrogen storage for NLi4-Decorated honeycomb borophene oxide. International Journal of Hydrogen Energy, 2022, 47, 19168-19174.	7.1	8
282	Misalignment Induced Artifacts in Quantitative Annular Bright-Field Imaging. Microscopy and Microanalysis, 2016, 22, 888-889.	0.4	7
283	Grouping Effect of Single Nickelâ^'N 4 Sites in Nitrogenâ€Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. Angewandte Chemie, 2018, 130, 15414-15418.	2.0	7
284	Unraveling atomic-scale lithiation mechanisms in a NiO thin film electrode. Journal of Materials Chemistry A, 2020, 8, 25198-25207.	10.3	7
285	Precursor-Mediated Linear- and Branched-Polytypism Control in Cu _α Zn _β Sn _γ Se _δ Colloidal Nanocrystals Using a Dual-Injection Method. Chemistry of Materials, 2020, 32, 7254-7262.	6.7	7
286	Dislocation-induced large local polarization inhomogeneity of ferroelectric materials. Scripta Materialia, 2021, 194, 113624.	5.2	7
287	Two-Dimensional Room-Temperature Giant Antiferrodistortive SrTiO3 at a Grain Boundary. Physical Review Letters, 2021, 126, 225702.	7.8	7
288	Heterojunctionâ€Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. Angewandte Chemie, 2021, 133, 25970-25974.	2.0	7

#	Article	IF	CITATIONS
289	Intercalation of van der Waals layered materials: A route towards engineering of electron correlation*. Chinese Physics B, 2020, 29, 097104.	1.4	7
290	Engineering Interlayer Electron–Phonon Coupling in WS ₂ /BN Heterostructures. Nano Letters, 2022, 22, 2725-2733.	9.1	7
291	Tetragonal BiFeO ₃ on yttria-stabilized zirconia. APL Materials, 2015, 3, 116104.	5.1	6
292	Atomic-scale structure and chemistry of YIG/GGG. AIP Advances, 2018, 8, 085117.	1.3	6
293	Image Restoration via Deep Memory-Based Latent Attention Network. IEEE Access, 2020, 8, 104728-104739.	4.2	6
294	Engineering of multiferroic BiFeO3 grain boundaries with head-to-head polarization configurations. Science Bulletin, 2021, 66, 771-776.	9.0	6
295	Microscopic physical origin of polarization induced large tunneling electroresistance in tetragonal-phase BiFeO3. Acta Materialia, 2022, 225, 117564.	7.9	6
296	Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	6
297	Ultrafast Antisolvent Growth of Single-Crystalline CsPbCl ₃ Microcavity for Low-Threshold Room Temperature Blue Lasing. ACS Applied Materials & Interfaces, 2022, 14, 21356-21362.	8.0	6
298	Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3. Acta Materialia, 2022, 234, 118010.	7.9	6
299	In Situ Atomicâ€Scale Observation of Electrochemical (De)potassiation in Te Nanowires. Small, 2022, 18, .	10.0	6
300	Atomic Structure and Chemistry of Selfâ€Assembled Nanopillar Composite Oxides. Advanced Materials Interfaces, 2017, 4, 1700225.	3.7	5
301	Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate. Nano Research, 2019, 12, 2712-2717.	10.4	5
302	Effect of single point defect on local properties in BiFeO3 thin film. Acta Materialia, 2019, 170, 132-137.	7.9	5
303	Probing Lattice Vibrations at SiO ₂ /Si Surface and Interface with Nanometer Resolution. Chinese Physics Letters, 2019, 36, 026801.	3.3	5
304	Local modulation of excitons and trions in monolayer WS2 by carbon nanotubes. Nano Research, 2020, 13, 1982-1987.	10.4	5
305	Correlating the electronic structures of metallic/semiconducting MoTe2 interface to its atomic structures. National Science Review, 2021, 8, nwaa087.	9.5	5
306	In situ TEM revealing the effects of dislocations on lithium-ion migration in transition metal dichalcogenides. Journal of Energy Chemistry, 2021, 58, 280-284.	12.9	5

#	Article	IF	CITATIONS
307	Development of in situ optical spectroscopy with high temporal resolution in an aberration-corrected transmission electron microscope. Review of Scientific Instruments, 2021, 92, 013704.	1.3	5
308	Prototype Design of a Domain-Wall-Based Magnetic Memory Using a Single Layer La _{0.67} Sr _{0.33} MnO ₃ Thin Film. ACS Applied Materials & Interfaces, 2021, 13, 23945-23950.	8.0	5
309	Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS Nano, 2021, 15, 16562-16571.	14.6	5
310	Layered-Template Synthesis of Graphene-like Fe-N-C Nanosheets for Highly Efficient Oxygen Reduction Reaction. Energy & amp; Fuels, 2021, 35, 20349-20357.	5.1	5
311	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	21.0	5
312	Accelerating the Activation of NO _x ^{â^'} on Ru Nanoparticles for Ammonia Production by Tuning Their Electron Deficiency. CCS Chemistry, 2022, 4, 3455-3462.	7.8	5
313	Spin-induced magnetic anisotropy in novel Co-doped GaN nanoneedles and their related photoluminescence. New Journal of Chemistry, 2018, 42, 8338-8341.	2.8	4
314	Atomic-scale mechanism of internal structural relaxation screening at polar interfaces. Physical Review B, 2018, 97, .	3.2	4
315	Atomic-Scale Mechanism of Grain Boundary Effects on the Magnetic and Transport Properties of Fe ₃ O ₄ Bicrystal Films. ACS Applied Materials & Interfaces, 2021, 13, 6889-6896.	8.0	4
316	Enhancement of Interfacial Polarization in BaTiO 3 Thin Films via Oxygen Inhomogeneity. Advanced Electronic Materials, 0, , 2100876.	5.1	4
317	Flexible Electronics: Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges (Adv. Energy Mater. 17/2016). Advanced Energy Materials, 2016, 6, .	19.5	3
318	Peeling off Nanometerâ€Thick Ferromagnetic Layers and Their van der Waals Heterostructures. Advanced Electronic Materials, 2019, 5, 1900345.	5.1	3
319	The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Research, 2022, 15, 3775-3780.	10.4	3
320	Ultraviolet/Visible Quasicylindrical Waves on Semimetal Cd 3 As 2 Nanoplates. Advanced Photonics Research, 0, , 2100354.	3.6	3
321	Photoenhanced Electroresistance at Dislocation-Mediated Phase Boundary. ACS Applied Materials & Interfaces, 2022, 14, 18662-18670.	8.0	3
322	Nanosized Cu-Li glass. Science Bulletin, 2018, 63, 1173-1174.	9.0	2
323	UV Lightâ€Emitting Diodes: Enhancement of Heat Dissipation in Ultraviolet Lightâ€Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer (Adv. Mater. 29/2019). Advanced Materials, 2019, 31, 1970211.	21.0	2
324	Atomic origin of Ti-deficient dislocation in SrTiO3 bicrystals and their electronic structures. Journal of Applied Physics, 2019, 126, .	2.5	2

#	Article	IF	CITATIONS
325	Atomic-environment-dependent thickness of ferroelastic domain walls near dislocations. Acta Materialia, 2020, 188, 635-640.	7.9	2
326	Metalâ€Based Nanocatalysts: Metalâ€Based Nanocatalysts via a Universal Design on Cellular Structure (Adv. Sci. 3/2020). Advanced Science, 2020, 7, 2070013.	11.2	2
327	Improving Performance of Bifacialâ€Grid III–V Solar Cells Bonded on Glass by Selective Contact Annealing. Solar Rrl, 2021, 5, 2100438.	5.8	2
328	Edge Raman enhancement at layered PbI ₂ platelets induced by laser waveguide effect. Nanotechnology, 2022, 33, 035203.	2.6	2
329	Graphene-Assisted Quasi-van der Waals Epitaxy of AlN Film on Nano-Patterned Sapphire Substrate for Ultraviolet Light Emitting Diodes. Journal of Visualized Experiments, 2020, , .	0.3	2
330	Photo-enhanced field electron emission of cadmium sulfide nanowires. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1963-1966.	5.1	1
331	Discovering a Novel Sodiation in FeF2 Electrodes for Sodium-Ion Batteries. Microscopy and Microanalysis, 2014, 20, 490-491.	0.4	1
332	Similarities and Differences in Kinetics and Dynamics During Li and Na Transport in MoS 2 Nanostructures. Microscopy and Microanalysis, 2016, 22, 1386-1387.	0.4	1
333	Nanopatterned Graphene: Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070209.	14.9	1
334	Observation of conducting filament growth in nanoscale resistive memories. , 0, .		1
335	Interface ferromagnetism and anomalous Hall effect of CdO/ferromagnetic-insulator heterostructures. Physical Review Materials, 2019, 3, .	2.4	1
336	Tunable Surface Electric Field of Electrocatalysts via Constructing Schottky Heterojunctions for Selective Conversion of Trash lons to Treasures. Chemistry - A European Journal, 2022, 28, .	3.3	1
337	Frontispiece: Tunable Surface Electric Field of Electrocatalysts via Constructing Schottky Heterojunctions for Selective Conversion of Trash Ions to Treasures. Chemistry - A European Journal, 2022, 28, .	3.3	1
338	Graph Convolutional Network-Based Screening Strategy for Rapid Identification of SARS-CoV-2 Cell-Entry Inhibitors. Journal of Chemical Information and Modeling, 2022, 62, 1988-1997.	5.4	1
339	Modulation of the Metal–Nonmetal Crossover in SrIrO ₃ /CaMnO ₃ Superlattices. ACS Applied Electronic Materials, 2022, 4, 3707-3713.	4.3	1
340	Electrical, Optical and Ionic Probe inside Transmission Electron Microscope. Materials Research Society Symposia Proceedings, 2013, 1525, 1.	0.1	0
341	Tracking Displacement Reactions in CuxV2O5 Cathodes by in-situ TEM. Microscopy and Microanalysis, 2014, 20, 450-451.	0.4	0
342	Atomic Observation of Phase Transformation from Spinel to Rock Salt in Lithium Manganese Oxide. Microscopy and Microanalysis, 2015, 21, 333-334.	0.4	0

#	Article	IF	CITATIONS
343	Annular Bright-Field Electron Microscopy Tracking Solid-State Chemical Reaction. Microscopy and Microanalysis, 2015, 21, 963-964.	0.4	0
344	Tracking Ionic Transport and Electrochemical Dynamics in Battery Electrodes Using in situ TEM-EELS. Microscopy and Microanalysis, 2015, 21, 803-804.	0.4	0
345	B11-O-11Atomic-scale Tracking Cation Diffusion in Lithium Manganese Oxide. Microscopy (Oxford,) Tj ETQq1 1 ().784314 ı 1.5	gBT /Overloo

Thin Films: Atomic Structure and Chemistry of Selfâ€Assembled Nanopillar Composite Oxides (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

347	Better Contrast for Imaging Defects by ABF. Microscopy and Microanalysis, 2017, 23, 480-481.	0.4	0
348	Asymmetric Phase Transition Pathways During Li/Na Migration in 2D Materials. Microscopy and Microanalysis, 2017, 23, 2070-2071.	0.4	0
349	Hyperbolic Phonon Polaritons: Broadâ€Spectralâ€Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in αâ€MoO ₃ (Adv. Mater. 46/2020). Advanced Materials, 2020, 32, 2070347.	21.0	0
350	Progressive multi-scale attention network for compression artifact reduction. Journal of Electronic Imaging, 2021, 30, .	0.9	0
351	Inside Back Cover: Wafer cale Oxygenâ€Đoped MoS ₂ Monolayer (Small Methods 6/2021). Small Methods, 2021, 5, 2170026.	8.6	0

346