
Yannick Poitelon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cc2d1b Contributes to the Regulation of Developmental Myelination in the Central Nervous System. Frontiers in Molecular Neuroscience, 2022, 15, 881571.	2.9	4
2	<scp>α_V</scp> integrins in Schwann cells promote attachment to axons, but are dispensable in vivo. Glia, 2021, 69, 91-108.	4.9	6
3	<scp>YAP</scp> and <scp>TAZ</scp> regulate Schwann cell proliferation and differentiation during peripheral nerve regeneration. Glia, 2021, 69, 1061-1074.	4.9	27
4	The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. Journal of the Peripheral Nervous System, 2021, 26, 4-16.	3.1	10
5	Development of a common peroneal nerve injury model in domestic swine for the study of translational neuropathic pain treatments. Journal of Neurosurgery, 2021, , 1-8.	1.6	2
6	Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells. Nature Communications, 2021, 12, 3285.	12.8	27
7	Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. ELife, 2021, 10, .	6.0	15
8	Deficiency of Microglial Autophagy Increases the Density of Oligodendrocytes and Susceptibility to Severe Forms of Seizures. ENeuro, 2021, 8, ENEURO.0183-20.2021.	1.9	13
9	Editorial: The Metabolism of the Neuron-Glia Unit. Frontiers in Cellular Neuroscience, 2021, 15, 791389.	3.7	2
10	Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Frontiers in Cellular Neuroscience, 2021, 15, 812588.	3.7	16
11	Role of sex and high-fat diet in metabolic and hypothalamic disturbances in the 3xTg-AD mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 285.	7.2	46
12	Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells, 2020, 9, 812.	4.1	163
13	Functional mechanism and pathogenic potential of MYRF ICA domain mutations implicated in birth defects. Scientific Reports, 2020, 10, 814.	3.3	11
14	YAP and TAZ Regulate Cc2d1b and PurÎ ² in Schwann Cells. Frontiers in Molecular Neuroscience, 2019, 12, 177.	2.9	9
15	Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Human Molecular Genetics, 2019, 28, 1260-1273.	2.9	28
16	HIPPO Stampede in Nerve Sheath Tumors. Cancer Cell, 2018, 33, 160-161.	16.8	2
17	GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. Journal of Experimental Medicine, 2018, 215, 941-961.	8.5	51
18	A dual role for Integrin α6β4 in modulating hereditary neuropathy with liability to pressure palsies. Journal of Neurochemistry, 2018, 145, 245-257.	3.9	11

YANNICK POITELON

#	Article	IF	CITATIONS
19	The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes. Methods in Molecular Biology, 2018, 1739, 233-253.	0.9	7
20	Acetylâ€CoA production from pyruvate is not necessary for preservation of myelin. Glia, 2017, 65, 1626-1639.	4.9	24
21	Influence of Mechanical Stimuli on Schwann Cell Biology. Frontiers in Cellular Neuroscience, 2017, 11, 347.	3.7	64
22	Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biology, 2017, 15, e2001408.	5.6	44
23	Myelinating cells can feel disturbances in the force. Oncotarget, 2017, 8, 5680-5681.	1.8	4
24	YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nature Neuroscience, 2016, 19, 879-887.	14.8	148
25	Tead1 regulates the expression of <i>Peripheral Myelin Protein 22</i> during Schwann cell development. Human Molecular Genetics, 2016, 25, ddw158.	2.9	44
26	How Schwann Cells Sort Axons. Neuroscientist, 2016, 22, 252-265.	3.5	147
27	Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nature Communications, 2015, 6, 8303.	12.8	37
28	Schwann cellâ€specific JAMâ€Câ€deficient mice reveal novel expression and functions for JAMâ€C in peripheral nerves. FASEB Journal, 2012, 26, 1064-1076.	0.5	18
29	Behavioral and Molecular Exploration of the AR-CMT2A Mouse Model Lmna R298C/R298C. NeuroMolecular Medicine, 2012, 14, 40-52.	3.4	30
30	Two novel missense mutations in <i>FGD4/FRABIN</i> cause Charcotâ€Marieâ€Tooth type 4H (CMT4H). Journal of the Peripheral Nervous System, 2012, 17, 141-146.	3.1	18
31	CAMOS, a nonprogressive, autosomal recessive, congenital cerebellar ataxia, is caused by a mutant zinc-finger protein, ZNF592. European Journal of Human Genetics, 2010, 18, 1107-1113.	2.8	26
32	Founder Effect and Estimation of the Age of the c.892C>T (p.Arg298Cys) Mutation in <i>LMNA</i> Associated to Charcotâ€Marieâ€Tooth Subtype CMT2B1 in Families from North Western Africa. Annals of Human Genetics, 2008, 72, 590-597.	0.8	27
33	Nuclear localization of a novel human syntaxin 1B isoform. Gene, 2008, 423, 160-171.	2.2	13
34	Mutations in FGD4 Encoding the Rho GDP/GTP Exchange Factor FRABIN Cause Autosomal Recessive Charcot-Marie-Tooth Type 4H. American Journal of Human Genetics, 2007, 81, 1-16.	6.2	152