Yannick Poitelon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331257/publications.pdf

Version: 2024-02-01

34 papers 1,262 citations

471509 17 h-index 395702 33 g-index

44 all docs

44 docs citations

44 times ranked 1698 citing authors

#	Article	IF	CITATIONS
1	Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells, 2020, 9, 812.	4.1	163
2	Mutations in FGD4 Encoding the Rho GDP/GTP Exchange Factor FRABIN Cause Autosomal Recessive Charcot-Marie-Tooth Type 4H. American Journal of Human Genetics, 2007, 81, 1-16.	6.2	152
3	YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nature Neuroscience, 2016, 19, 879-887.	14.8	148
4	How Schwann Cells Sort Axons. Neuroscientist, 2016, 22, 252-265.	3 . 5	147
5	Influence of Mechanical Stimuli on Schwann Cell Biology. Frontiers in Cellular Neuroscience, 2017, 11, 347.	3.7	64
6	GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. Journal of Experimental Medicine, 2018, 215, 941-961.	8.5	51
7	Role of sex and high-fat diet in metabolic and hypothalamic disturbances in the 3xTg-AD mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 285.	7.2	46
8	Tead1 regulates the expression of <i>Peripheral Myelin Protein 22 </i> during Schwann cell development. Human Molecular Genetics, 2016, 25, ddw158.	2.9	44
9	Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biology, 2017, 15, e2001408.	5.6	44
10	Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nature Communications, 2015, 6, 8303.	12.8	37
11	Behavioral and Molecular Exploration of the AR-CMT2A Mouse Model Lmna R298C/R298C. NeuroMolecular Medicine, 2012, 14, 40-52.	3.4	30
12	Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Human Molecular Genetics, 2019, 28, 1260-1273.	2.9	28
13	Founder Effect and Estimation of the Age of the c.892C>T (p.Arg298Cys) Mutation in <i>LMNA</i> Associated to Charcotâ€Marieâ€Tooth Subtype CMT2B1 in Families from North Western Africa. Annals of Human Genetics, 2008, 72, 590-597.	0.8	27
14	<scp>YAP</scp> and <scp>TAZ</scp> regulate Schwann cell proliferation and differentiation during peripheral nerve regeneration. Glia, 2021, 69, 1061-1074.	4.9	27
15	Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells. Nature Communications, 2021, 12, 3285.	12.8	27
16	CAMOS, a nonprogressive, autosomal recessive, congenital cerebellar ataxia, is caused by a mutant zinc-finger protein, ZNF592. European Journal of Human Genetics, 2010, 18, 1107-1113.	2.8	26
17	Acetylâ€CoA production from pyruvate is not necessary for preservation of myelin. Glia, 2017, 65, 1626-1639.	4.9	24
18	Schwann cellâ€specific JAM â€deficient mice reveal novel expression and functions for JAM in peripheral nerves. FASEB Journal, 2012, 26, 1064-1076.	0.5	18

#	Article	IF	CITATIONS
19	Two novel missense mutations in <i>FGD4/FRABIN</i> cause Charcotâ€Marieâ€Tooth type 4H (CMT4H). Journal of the Peripheral Nervous System, 2012, 17, 141-146.	3.1	18
20	Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Frontiers in Cellular Neuroscience, 2021, 15, 812588.	3.7	16
21	Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. ELife, 2021, 10, .	6.0	15
22	Nuclear localization of a novel human syntaxin 1B isoform. Gene, 2008, 423, 160-171.	2.2	13
23	Deficiency of Microglial Autophagy Increases the Density of Oligodendrocytes and Susceptibility to Severe Forms of Seizures. ENeuro, 2021, 8, ENEURO.0183-20.2021.	1.9	13
24	A dual role for Integrin $\hat{l}\pm6\hat{l}^24$ in modulating hereditary neuropathy with liability to pressure palsies. Journal of Neurochemistry, 2018, 145, 245-257.	3.9	11
25	Functional mechanism and pathogenic potential of MYRF ICA domain mutations implicated in birth defects. Scientific Reports, 2020, 10, 814.	3.3	11
26	The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. Journal of the Peripheral Nervous System, 2021, 26, 4-16.	3.1	10
27	YAP and TAZ Regulate Cc2d1b and Pur \hat{l}^2 in Schwann Cells. Frontiers in Molecular Neuroscience, 2019, 12, 177.	2.9	9
28	The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes. Methods in Molecular Biology, 2018, 1739, 233-253.	0.9	7
29	<scp>α_V</scp> integrins in Schwann cells promote attachment to axons, but are dispensable in vivo. Glia, 2021, 69, 91-108.	4.9	6
30	Myelinating cells can feel disturbances in the force. Oncotarget, 2017, 8, 5680-5681.	1.8	4
31	Cc2d1b Contributes to the Regulation of Developmental Myelination in the Central Nervous System. Frontiers in Molecular Neuroscience, 2022, 15, 881571.	2.9	4
32	HIPPO Stampede in Nerve Sheath Tumors. Cancer Cell, 2018, 33, 160-161.	16.8	2
33	Development of a common peroneal nerve injury model in domestic swine for the study of translational neuropathic pain treatments. Journal of Neurosurgery, 2021, , 1-8.	1.6	2
34	Editorial: The Metabolism of the Neuron-Glia Unit. Frontiers in Cellular Neuroscience, 2021, 15, 791389.	3.7	2