List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2330982/publications.pdf Version: 2024-02-01

		31902	20900
210	14,116	53	115
papers	citations	h-index	g-index
218	218	218	13644
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recommendations for Blood Pressure Measurement in Humans and Experimental Animals. Hypertension, 2005, 45, 142-161.	1.3	1,990
2	Obesity-Induced Hypertension. Circulation Research, 2015, 116, 991-1006.	2.0	829
3	The Kidney, Hypertension, and Obesity. Hypertension, 2003, 41, 625-633.	1.3	728
4	Chronic Leptin Infusion Increases Arterial Pressure. Hypertension, 1998, 31, 409-414.	1.3	636
5	Functional and Structural Changes in the Kidney in the Early Stages of Obesity. Journal of the American Society of Nephrology: JASN, 2001, 12, 1211-1217.	3.0	451
6	Obesity-induced Hypertension: Role of Sympathetic Nervous System, Leptin, and Melanocortins. Journal of Biological Chemistry, 2010, 285, 17271-17276.	1.6	399
7	Sodium, Blood Pressure, and Cardiovascular Disease. Circulation, 2012, 126, 2880-2889.	1.6	383
8	Obesity, kidney dysfunction and hypertension: mechanistic links. Nature Reviews Nephrology, 2019, 15, 367-385.	4.1	336
9	Obesity, hypertension, and chronic kidney disease. International Journal of Nephrology and Renovascular Disease, 2014, 7, 75.	0.8	335
10	The Importance of Population-Wide Sodium Reduction as a Means to Prevent Cardiovascular Disease and Stroke. Circulation, 2011, 123, 1138-1143.	1.6	331
11	Mechanisms of Obesity-Associated Cardiovascular and Renal Disease. American Journal of the Medical Sciences, 2002, 324, 127-137.	0.4	325
12	Chronic Cardiovascular and Renal Actions of Leptin. Hypertension, 2002, 39, 496-501.	1.3	270
13	Obesity, Hypertension, and Cardiac Dysfunction. Circulation Research, 2020, 126, 789-806.	2.0	252
14	Renal Denervation Attenuates the Sodium Retention and Hypertension Associated With Obesity. Hypertension, 1995, 25, 893-897.	1.3	246
15	Obesity and hypertension: two epidemics or one?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R803-R813.	0.9	223
16	Mechanisms of Hypertension and Kidney Disease in Obesity. Annals of the New York Academy of Sciences, 1999, 892, 91-107.	1.8	192
17	Is obesity a major cause of chronic kidney disease?. Advances in Chronic Kidney Disease, 2004, 11, 41-54.	2.2	190
18	Aldosterone Antagonism Attenuates Obesity-Induced Hypertension and Glomerular Hyperfiltration. Hypertension, 2004, 43, 41-47.	1.3	187

#	Article	IF	CITATIONS
19	Hypertension: Physiology and Pathophysiology. , 2012, 2, 2393-2442.		187
20	Mechanisms of Abnormal Renal Sodium Handling in Obesity Hypertension. American Journal of Hypertension, 1997, 10, 49S-55S.	1.0	177
21	Hypertension in Obese Zucker Rats. Hypertension, 1996, 28, 1047-1054.	1.3	167
22	Obesity-associated hypertension and kidney disease. Current Opinion in Nephrology and Hypertension, 2003, 12, 195-200.	1.0	157
23	Pathophysiology of obesity hypertension. Current Hypertension Reports, 2000, 2, 139-147.	1.5	153
24	Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Canadian Journal of Cardiology, 2020, 36, 671-682.	0.8	153
25	Pathophysiology and Treatment of Obesity Hypertension. Current Pharmaceutical Design, 2004, 10, 3621-3637.	0.9	133
26	Melanocortin-4 Receptor–Deficient Mice Are Not Hypertensive or Salt-Sensitive Despite Obesity, Hyperinsulinemia, and Hyperleptinemia. Hypertension, 2005, 46, 326-332.	1.3	132
27	Renal Dysfunction, Rather Than Nonrenal Vascular Dysfunction, Mediates Salt-Induced Hypertension. Circulation, 2016, 133, 894-906.	1.6	128
28	The role of the sympathetic nervous system in obesity-related hypertension. Current Hypertension Reports, 2009, 11, 206-211.	1.5	121
29	Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1031-H1051.	1.5	117
30	Melanocortin-4 Receptor Mediates Chronic Cardiovascular and Metabolic Actions of Leptin. Hypertension, 2006, 48, 58-64.	1.3	116
31	Role of Hypothalamic Melanocortin 3/4-Receptors in Mediating Chronic Cardiovascular, Renal, and Metabolic Actions of Leptin. Hypertension, 2004, 43, 1312-1317.	1.3	106
32	Control of Blood Pressure, Appetite, and Glucose by Leptin in Mice Lacking Leptin Receptors in Proopiomelanocortin Neurons. Hypertension, 2011, 57, 918-926.	1.3	106
33	Hypothalamic Melanocortin Receptors and Chronic Regulation of Arterial Pressure and Renal Function. Hypertension, 2003, 41, 768-774.	1.3	104
34	Inhibition of NO Synthesis Enhances Chronic Cardiovascular and Renal Actions of Leptin. Hypertension, 2001, 37, 670-676.	1.3	103
35	Impact of the obesity epidemic on hypertension and renal disease. Current Hypertension Reports, 2003, 5, 386-392.	1.5	99
36	Catheter-Based Radiorefrequency Renal Denervation Lowers Blood Pressure in Obese Hypertensive Dogs. American Journal of Hypertension, 2014, 27, 1285-1292.	1.0	84

#	Article	IF	CITATIONS
37	Obesity promotes melanoma tumor growth: Role of leptin. Cancer Biology and Therapy, 2009, 8, 1871-1879.	1.5	79
38	Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2021, 78, e38-e50.	1.3	79
39	Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovascular Research, 2021, 117, 1859-1876.	1.8	78
40	Historical Perspective of the Renin-Angiotensin System. Molecular Biotechnology, 2003, 24, 27-39.	1.3	75
41	Obesity, Metabolic Syndrome and Diabetic Nephropathy. Contributions To Nephrology, 2011, 170, 28-35.	1.1	75
42	Catheter-Based Radiofrequency Renal Denervation: Location Effects on Renal Norepinephrine. American Journal of Hypertension, 2015, 28, 909-914.	1.0	75
43	Insulin Resistance, Hyperinsulinemia, and Hypertension: Causes, Consequences, or Merely Correlations?. Experimental Biology and Medicine, 1995, 208, 317-329.	1.1	73
44	Endogenous Melanocortin System Activity Contributes to the Elevated Arterial Pressure in Spontaneously Hypertensive Rats. Hypertension, 2008, 51, 884-890.	1.3	73
45	Resistance to Metabolic Actions of Insulin and Its Role in Hypertension. American Journal of Hypertension, 1994, 7, 772-778.	1.0	69
46	Role of Adrenergic Activity in Pressor Responses to Chronic Melanocortin Receptor Activation. Hypertension, 2004, 43, 370-375.	1.3	67
47	Does Chronic Hyperinsulinemia Cause Hypertension?. American Journal of Hypertension, 1989, 2, 171-173.	1.0	63
48	Hyperinsulinemia: A link between obesity and hypertension?. Kidney International, 1993, 43, 1402-1417.	2.6	63
49	Hemodynamic and Renal Responses to Chronic Hyperinsulinemia in Obese, Insulin-Resistant Dogs. Hypertension, 1995, 25, 994-1002.	1.3	63
50	Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion. Basic Research in Cardiology, 2018, 113, 47.	2.5	60
51	Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney International, 2000, 58, 721-729.	2.6	58
52	Role of leptin and central nervous system melanocortins in obesity hypertension. Current Opinion in Nephrology and Hypertension, 2013, 22, 135-140.	1.0	54
53	Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. American Journal of Physiology - Renal Physiology, 2018, 315, F323-F331.	1.3	54
54	Insulin-Induced Hypertension in Rats Depends on an Intact Renin-Angiotensin System. Hypertension, 1997, 29, 1014-1019.	1.3	54

#	Article	IF	CITATIONS
55	Synergistic Interaction of Hypertension and Diabetes in Promoting Kidney Injury and the Role of Endoplasmic Reticulum Stress. Hypertension, 2017, 69, 879-891.	1.3	52
56	Device-Based Neuromodulation for Resistant Hypertension Therapy. Circulation Research, 2019, 124, 1071-1093.	2.0	51
57	Associations between height and blood pressure in the United States population. Medicine (United) Tj ETQq1	1 0.784314 0.4	∙rg₿Ţ /Overlo
58	Chronic antidiabetic and cardiovascular actions of leptin: role of CNS and increased adrenergic activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1275-R1282.	0.9	48
59	Aldosterone Blunts Tubuloglomerular Feedback by Activating Macula Densa Mineralocorticoid Receptors. Hypertension, 2012, 59, 599-606.	1.3	48
60	Cigarette Smoking and Chronic Kidney Disease in African Americans in the Jackson Heart Study. Journal of the American Heart Association, 2016, 5, .	1.6	47
61	Postmenopausal hypertension: role of the sympathetic nervous system in an animal model. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R248-R256.	0.9	46
62	A Functional Melanocortin System May Be Required for Chronic CNS-Mediated Antidiabetic and Cardiovascular Actions of Leptin. Diabetes, 2009, 58, 1749-1756.	0.3	45
63	Control of blood pressure by the reninâ€angiotensinâ€aldosterone system. Clinical Cardiology, 1991, 14, 6-21.	0.7	44
64	Impact of obesity on renal structure and function in the presence and absence of hypertension: evidence from melanocortin-4 receptor-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R803-R812.	0.9	42
65	Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R708-R713.	0.9	42
66	Obesity-Induced Hypertension: Brain Signaling Pathways. Current Hypertension Reports, 2016, 18, 58.	1.5	42
67	Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1974-H1981.	1.5	38
68	Role of Endothelin-1 in Blood Pressure Regulation in a Rat Model of Visceral Obesity and Hypertension. Hypertension, 2004, 43, 383-387.	1.3	37
69	Rescue of cardiac leptin receptors in <i>db/db</i> mice prevents myocardial triglyceride accumulation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E316-E325.	1.8	37
70	Central leptin replacement enhances chemorespiratory responses in leptin-deficient mice independent of changes in body weight. Pflugers Archiv European Journal of Physiology, 2012, 464, 145-153.	1.3	36
71	Cardiovascular and renal responses to a high-fat diet in Osborne-Mendel rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R547-R552.	0.9	35
72	Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R561-R567.	0.9	35

#	Article	IF	CITATIONS
73	Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R451-R466.	0.9	35
74	Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation. Hypertension Research, 2013, 36, 496-503.	1.5	34
75	The Brain Melanocortin System, Sympathetic Control, and Obesity Hypertension. Physiology, 2014, 29, 196-202.	1.6	34
76	Pressure natriuresis and control of arterial pressure during chronic norepinephrine infusion. Journal of Hypertension, 1988, 6, 723-731.	0.3	33
77	CARDIOVASCULAR ACTIONS OF INSULIN: ARE THEY IMPORTANT IN LONG-TERM BLOOD PRESSURE REGULATION?. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 689-700.	0.9	32
78	Renal Function in One-Kidney, One-Clip Hypertension and Low Renin Essential Hypertension. American Journal of Hypertension, 1991, 4, 523S-533S.	1.0	30
79	Differential control of metabolic and cardiovascular functions by melanocortin-4 receptors in proopiomelanocortin neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R359-R368.	0.9	30
80	Control of metabolic and cardiovascular function by the leptin–brain melanocortin pathway. IUBMB Life, 2013, 65, 692-698.	1.5	29
81	Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1438-R1447.	0.9	29
82	Role of Proopiomelanocortin Neuron Stat3 in Regulating Arterial Pressure and Mediating the Chronic Effects of Leptin. Hypertension, 2013, 61, 1066-1074.	1.3	28
83	Role of the Renal Microcirculation in Progression of Chronic Kidney Injury in Obesity. American Journal of Nephrology, 2016, 44, 354-367.	1.4	28
84	Role of the brain melanocortins in blood pressure regulation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2508-2514.	1.8	28
85	CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Archives of Biochemistry and Biophysics, 2019, 672, 108072.	1.4	28
86	Melanocortin-4 Receptors and Sympathetic Nervous System Activation in Hypertension. Current Hypertension Reports, 2019, 21, 46.	1.5	28
87	BOLD magnetic resonance imaging in nephrology. International Journal of Nephrology and Renovascular Disease, 2018, Volume 11, 103-112.	0.8	27
88	Does Obesity Induce Resistance to the Long-Term Cardiovascular and Metabolic Actions of Melanocortin 3/4 Receptor Activation?. Hypertension, 2006, 47, 259-264.	1.3	25
89	SPRINT. Hypertension, 2016, 67, 261-262.	1.3	25
90	Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons. Hypertension, 2016, 67, 378-386.	1.3	24

#	Article	IF	CITATIONS
91	Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension. Hypertension, 2020, 75, 902-917.	1.3	24
92	Mechanisms of Synergistic Interactions of Diabetes and Hypertension in Chronic Kidney Disease: Role of Mitochondrial Dysfunction and ER Stress. Current Hypertension Reports, 2020, 22, 15.	1.5	24
93	Increased Hyaluronic Acid in the Inner Renal Medulla of Obese Dogs. Hypertension, 1995, 25, 888-892.	1.3	24
94	Chronic effects of centrally administered adiponectin on appetite, metabolism and blood pressure regulation in normotensive and hypertensive rats. Peptides, 2012, 37, 1-5.	1.2	23
95	Can We End the Salt Wars With a Randomized Clinical Trial in a Controlled Environment?. Hypertension, 2018, 72, 10-11.	1.3	23
96	Kinetic analysis of cardiac transcriptome regulation during chronic high-fat diet in dogs. Physiological Genomics, 2004, 19, 32-40.	1.0	22
97	Enhanced blood pressure and appetite responses to chronic central melanocortin-3/4 receptor blockade in dietary-induced obesity. Journal of Hypertension, 2010, 28, 1466-1470.	0.3	22
98	Effects of Sodium Reduction on Energy, Metabolism, Weight, Thirst, and Urine Volume. Hypertension, 2020, 75, 723-729.	1.3	21
99	CNS Regulation of Glucose Homeostasis: Role of the Leptin-Melanocortin System. Current Diabetes Reports, 2020, 20, 29.	1.7	21
100	Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet. Journal of Hypertension, 2011, 29, 758-762.	0.3	20
101	Direct Recording of Renal Sympathetic Nerve Activity in Unrestrained, Conscious Mice. Hypertension, 2012, 60, 856-864.	1.3	20
102	Beta-Blocker Use Is Associated with Higher Renal Tissue Oxygenation in Hypertensive Patients Suspected of Renal Artery Stenosis. CardioRenal Medicine, 2016, 6, 261-268.	0.7	20
103	Hypertension in Blacks. Hypertension, 2017, 69, 761-769.	1.3	20
104	Brain-mediated antidiabetic, anorexic, and cardiovascular actions of leptin require melanocortin-4 receptor signaling. Journal of Neurophysiology, 2015, 113, 2786-2791.	0.9	19
105	Obesity-induced changes in kidney mitochondria and endoplasmic reticulum in the presence or absence of leptin. American Journal of Physiology - Renal Physiology, 2015, 309, F731-F743.	1.3	19
106	Higher plasma leptin levels are associated with reduced left ventricular mass and left ventricular diastolic stiffness in black women: insights from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Hypertension Research, 2018, 41, 629-638.	1.5	18
107	Cardiovascular, Renal, and Metabolic Responses to Chronic Central Administration of Agouti-Related Peptide. Hypertension, 2004, 44, 853-858.	1.3	16
108	Chronic central nervous system hyperinsulinemia and regulation of arterial pressure and food intake. Journal of Hypertension, 2006, 24, 1391-1395.	0.3	16

#	Article	IF	CITATIONS
109	Systemic But Not Central Nervous System Nitric Oxide Synthase Inhibition Exacerbates the Hypertensive Effects of Chronic Melanocortin-3/4 Receptor Activation. Hypertension, 2011, 57, 428-434.	1.3	16
110	Inhibitor κB Kinase 2 Is a Myosin Light Chain Kinase in Vascular Smooth Muscle. Circulation Research, 2013, 113, 562-570.	2.0	16
111	Chronic Central Nervous System MC3/4R Blockade Attenuates Hypertension Induced by Nitric Oxide Synthase Inhibition but Not by Angiotensin II Infusion. Hypertension, 2015, 65, 171-177.	1.3	16
112	Role of autonomic nervous system in chronic CNS-mediated antidiabetic action of leptin. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E420-E428.	1.8	15
113	Pathogenesis of Hypertension. , 2018, , 33-51.		15
114	Leptin reverses hyperglycemia and hyperphagia in insulin deficient diabetic rats by pituitary-independent central nervous system actions. PLoS ONE, 2017, 12, e0184805.	1.1	15
115	The Altered Structure of Renal Papillary Outflow Tracts in Obesity. Ultrastructural Pathology, 2000, 24, 251-257.	0.4	14
116	Associations of Nocturnal Blood Pressure With Cognition by Selfâ€Identified Race in Middleâ€Aged and Older Adults: The GENOA (Genetic Epidemiology Network of Arteriopathy) Study. Journal of the American Heart Association, 2017, 6, .	1.6	14
117	Impact of leptin deficiency compared with neuronal-specific leptin receptor deletion on cardiometabolic regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R552-R562.	0.9	14
118	Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. Journal of Molecular and Cellular Cardiology, 2021, 158, 38-48.	0.9	14
119	Pathophysiology of Obesity—Induced Hypertension and Target Organ Damage. , 2007, , 447-468.		13
120	Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R478-R488.	0.9	13
121	Renal perfusion pressure is an important determinant of sodium and calcium excretion in DOC-salt hypertensionâ [~] †. American Journal of Hypertension, 1998, 11, 1199-1207.	1.0	11
122	Cardiovascular regulation during insulin infusion into the carotid or vertebral artery in dogs. Journal of Hypertension, 1999, 17, 251-260.	0.3	11
123	Dual regulation of tumor necrosis factor- \hat{l}_{\pm} on myosin light chain phosphorylation in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H398-H406.	1.5	11
124	Role of SOCS3 in POMC neurons in metabolic and cardiovascular regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R338-R351.	0.9	11
125	Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R476-R484.	0.9	11
126	Restoration of Cardiac Function After Myocardial Infarction by Long-Term Activation of the CNS Leptin-Melanocortin System. JACC Basic To Translational Science, 2021, 6, 55-70.	1.9	11

#	Article	IF	CITATIONS
127	What can we do about the "epidemic―of obesity. American Journal of Hypertension, 2002, 15, 657-659.	1.0	10
128	Understanding the use and impact of allied health services for people with chronic health conditions in Central and Eastern Sydney, Australia: a five-year longitudinal analysis. Primary Health Care Research and Development, 2019, 20, e141.	0.5	10
129	Interaction of Obesity and Hypertension on Cardiac Metabolic Remodeling and Survival Following Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e018212.	1.6	10
130	Enhanced Vascular Reactivity and Ca2+Entry With Low-Salt Diet. Hypertension, 1999, 34, 882-888.	1.3	9
131	Response to Recommendations for Blood Pressure Measurement in Human and Experimental Animals; Part 1: Blood Pressure Measurement in Humans and Miscuffing: A Problem With New Guidelines: Addendum. Hypertension, 2006, 48, .	1.3	9
132	Left Ventricular False Tendons are Associated With Left Ventricular Dilation and Impaired Systolic and Diastolic Function. American Journal of the Medical Sciences, 2017, 354, 278-284.	0.4	9
133	Neuronal Suppressor of Cytokine Signaling 3. Hypertension, 2018, 71, 1248-1257.	1.3	9
134	Role of melanocortin 4 receptor in hypertension induced by chronic intermittent hypoxia. Acta Physiologica, 2019, 225, e13222.	1.8	8
135	Physical Activity, Inflammation, Coronary Artery Calcification, and Incident Coronary Heart Disease in African Americans: Insights From the Jackson Heart Study. Mayo Clinic Proceedings, 2021, 96, 901-911.	1.4	8
136	Sex differences in the impact of parental obesity on offspring cardiac SIRT3 expression, mitochondrial efficiency, and diastolic function early in life. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H485-H495.	1.5	8
137	<i>Hypertension</i> â€"Opportunities and Challenges. Hypertension, 2002, 39, 1-2.	1.3	8
138	Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. American Journal of Physiology - Renal Physiology, 2022, 322, F76-F88.	1.3	8
139	The promise of translational physiology. American Journal of Physiology - Renal Physiology, 2001, 281, G1127-G1128.	1.6	7
140	Hypertension and Cardiovascular Disease in Women. Hypertension, 2008, 51, 951-951.	1.3	7
141	Cardiometabolic Surgery for Treatment of Hypertension?. Hypertension, 2019, 73, 543-546.	1.3	7
142	Comprehensive insights in GRK4 and hypertension: From mechanisms to potential therapeutics. , 2022, 239, 108194.		7
143	Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R533-R539.	0.9	6
144	In search for potential antidiabetic compounds from natural sources: docking, synthesis and biological screening of small molecules from Lycium spp. (Goji). Heliyon, 2020, 6, e02782.	1.4	6

#	Article	IF	CITATIONS
145	Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin. FASEB Journal, 2017, 31, 2418-2428.	0.2	5
146	Introduction to a Compendium on the Pathophysiology and Treatment of Hypertension. Circulation Research, 2019, 124, 967-968.	2.0	5
147	Does leptin contribute to obesity hypertension?. Current Opinion in Endocrinology, Diabetes and Obesity, 1999, 6, 225.	0.6	5
148	The promise of translational physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H803-H804.	1.5	4
149	Physiology and Pathophysiology of Hypertension. , 2013, , 1319-1352.		4
150	Role of hindbrain melanocortin-4 receptor activity in controlling cardiovascular and metabolic functions in spontaneously hypertensive rats. Journal of Hypertension, 2015, 33, 1201-1206.	0.3	4
151	Increased sleep time and reduced energy expenditure contribute to obesity after ovariectomy and a high fat diet. Life Sciences, 2018, 212, 119-128.	2.0	4
152	Chronic CNS-mediated cardiometabolic actions of leptin: potential role of sex differences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R173-R181.	0.9	4
153	General practitioner follow-up after hospitalisation in Central and Eastern Sydney, Australia: access and impact on health services. Australian Health Review, 2021, 45, 247-254.	0.5	4
154	Hypertension. Hypertension, 2008, 52, 425-428.	1.3	3
155	Obesity and Metabolic Syndrome Hypertension. Updates in Hypertension and Cardiovascular Protection, 2018, , 705-722.	0.1	3
156	Parental obesity alters offspring blood pressure regulation and cardiovascular responses to stress: role of P2X7R and sex differences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R421-R433.	0.9	3
157	OVERALL CIRCULATORY CONTROL IN HYPERTENSION. Australian and New Zealand Journal of Medicine, 1976, 6, 72-80.	0.5	2
158	Hypertension —Update 2005. Hypertension, 2005, 45, 316-318.	1.3	2
159	Role of the Kidney in Hypertension. , 2007, , 241-263.		2
160	Thirtieth Anniversary of Hypertension. Hypertension, 2009, 54, 685-688.	1.3	2
161	Regulation of Blood Pressure, Appetite, and Glucose by CNS Melanocortin System in Hyperandrogenemic Female SHR. American Journal of Hypertension, 2016, 29, 832-840.	1.0	2
162	Novel Approach for Simultaneous Recording of Renal Sympathetic Nerve Activity and Blood Pressure with Intravenous Infusion in Conscious, Unrestrained Mice Journal of Visualized Experiments, 2018, ,	0.2	2

.

#	Article	IF	CITATIONS
163	Chronic Antidiabetic Actions of Leptin: Evidence From Parabiosis Studies for a CNS-Derived Circulating Antidiabetic Factor. Diabetes, 2021, 70, 2264-2274.	0.3	2
164	Abstract 27: Leptin Reduces Food Intake but Fails to Raise Blood Pressure In Mice With Deficiency of Insulin Receptor Substrate (IRS2) In the Entire Brain or Specifically in Pomc Neurons. Hypertension, 2012, 60, .	1.3	2
165	Sex Differences in Hypertension: Related to Genes, Jean Sizes, and Salt Sensitivity?. Hypertension, 2022, 79, 47-49.	1.3	2
166	Ganglionic blockade does not impair the chronic CNSâ€mediated antidiabetic action of leptin in streptozotocinâ€induced diabetic rats. FASEB Journal, 2012, 26, 1128.3.	0.2	1
167	TRPC6 deficiency causes obesity and metabolic dysfunction. FASEB Journal, 2019, 33, 753.1.	0.2	1
168	Impact of Mineralocorticoid Receptor and Angiotensin II Type 1 Receptor Antagonism on Blood Pressure Regulation in Obese Zucker Rats: Role of Sex Differences. American Journal of Hypertension, 2021, 34, 999-1005.	1.0	1
169	Transient receptor potential cation channel 6 deficiency leads to increased body weight and metabolic dysfunction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R81-R97.	0.9	1
170	Chronic Central Nervous System Leptin Infusion Improves Cardiac Function and Metabolism after Ischemia/Reperfusion Injury. FASEB Journal, 2022, 36, .	0.2	1
171	The juxtaglomerular complex: its possible control of multiple nephron functions. Nature, 1979, 277, 601-602.	13.7	Ο
172	Obesity, insulin resistance, and the renal circulation. Advances in Organ Biology, 2000, , 383-397.	0.1	0
173	Hypertension —An Update. Hypertension, 2002, 40, 115-116.	1.3	0
174	Response to Thyrotropin-Releasing Hormone Precursor Gene Knocking Down Impedes Melanocortin-Induced Hypertension in Rats. Hypertension, 2008, 52, .	1.3	0
175	61st Annual Fall Conference and Scientific Sessions of the American Heart Association Council for High Blood Pressure Research. Hypertension, 2008, 51, 421-423.	1.3	Ο
176	The Renin–Angiotensin–Aldosterone System: A Personal Perspective and Festschrift for John H. Laragh, MD. American Journal of Hypertension, 2014, 27, 1005-1007.	1.0	0
177	Thomas George Coleman, PhD (1940–2021). Hypertension, 2021, 77, 1800-1803.	1.3	Ο
178	Obesity and Hypertension: Impact on Cardiovascular and Renal Systems. , 2005, , 464-474.		0
179	Impact of Obesity on Renal Structure and Function in The Absence of Hypertension: Evidence From Melanocortinâ€4 Receptor (MC4R) Deficient Mice. FASEB Journal, 2006, 20, .	0.2	0
180	Chronic MC3/4R activation does not mimic the actions of leptin on baroreceptor sensitivity and heart rate regulation in diabetic rats. FASEB Journal, 2008, 22, 947.5.	0.2	0

#	Article	IF	CITATIONS
181	Cardiovascular function and metabolism in old melanocortinâ€4 receptor deficient obese mice FASEB Journal, 2008, 22, 947.2.	0.2	0
182	Rapid cardiac dysfunction caused by inducible cardiac specific leptin receptor deletion. FASEB Journal, 2008, 22, 743.3.	0.2	0
183	Cardiovascular and metabolic responses to chronic central MC3/4R antagonism in rats fed a high fat diet. FASEB Journal, 2008, 22, 947.4.	0.2	0
184	Cardiovascular and metabolic regulation in mice with Shp2 deletion in forebrain neurons. FASEB Journal, 2009, 23, 785.5.	0.2	0
185	Cardiovascular and metabolic responses to chronic PYY3â€36 infusion. FASEB Journal, 2009, 23, 983.4.	0.2	0
186	Cardiovascular and metabolic responses to chronic central infusion of leptin in rats fed a high fat diet. FASEB Journal, 2009, 23, 1015.5.	0.2	0
187	Chronic CNS actions of adiponectin on appetite, metabolism and blood pressure. FASEB Journal, 2010, 24, 780.1.	0.2	0
188	Central NPY deficiency does not enhance the chronic actions of melanocortin 3 and 4 receptors (MC3/4R) activation on glucose homeostasis, appetite and cardiovascular function in diabetic mice. FASEB Journal, 2010, 24, 597.6.	0.2	0
189	Cardiovascular and metabolic responses to thermoneutrality and cold ambient temperature in lean and obese leptin deficient mice. FASEB Journal, 2011, 25, .	0.2	0
190	Melanocortin 4 receptors in the paraventricular nucleus of the hypothalamus do not mediate chronic metabolic or cardiovascular effects of leptin after established obesity in mice. FASEB Journal, 2012, 26, 876.13.	0.2	0
191	Metabolic and appetite responses to fasting and refeeding in mice with Shp2 deletion in forebrain neurons. FASEB Journal, 2012, 26, 877.2.	0.2	0
192	AT1 receptor antagonism but not mineralocorticoid receptor blockade lowers blood pressure in obese Zucker rats. FASEB Journal, 2012, 26, 1093.6.	0.2	0
193	Direct recording of renal sympathetic nerve activity in unrestrained, conscious mice. FASEB Journal, 2012, 26, .	0.2	0
194	Shp2 signaling in Pomc neurons is important for leptin's actions on blood pressure, energy balance and glucose homeostasis FASEB Journal, 2013, 27, 1120.3.	0.2	0
195	Cardiovascular and metabolic regulation in mice with neuron specific deletion of the leptin receptor FASEB Journal, 2013, 27, 1153.6.	0.2	0
196	Hypophysectomy attenuates leptinâ€induced tachycardia without affecting leptin's action on appetite and body weight FASEB Journal, 2013, 27, 1123.12.	0.2	0
197	Effects of Hyperandrogenemia on Cardiovascular and Metabolic Responses to Chronic Melanocortinâ€4 Receptor Blockade in Female SHR. FASEB Journal, 2015, 29, 647.2.	0.2	0
198	Interaction of Hypertension and Diabetes in Progressive Nephropathy: Role of ER Stress. FASEB Journal, 2015, 29, 959.9.	0.2	0

#	Article	IF	CITATIONS
199	Evidence for a circulating factor released by the brain that contributes to chronic antidiabetic actions of leptin. FASEB Journal, 2018, 32, 603.3.	0.2	0
200	Role of Suppressor of Cytokine Signaling 3 (SOCS3) in POMC Neurons in Metabolic and Cardiovascular Regulation during Chronic Leptin Infusion. FASEB Journal, 2018, 32, 732.8.	0.2	0
201	Loss of biliverdin reductaseâ€A (BVRA) promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. FASEB Journal, 2018, 32, 849.1.	0.2	0
202	Role of Melanocortinâ€4 Receptor Activation in Hypertension Induced by Chronic Intermittent Hypoxia. FASEB Journal, 2018, 32, 727.6.	0.2	0
203	Metabolic and cardiovascular responses to chronic intermittent hypoxia and hypercapnia. FASEB Journal, 2019, 33, 533.4.	0.2	0
204	Chronic Intracerebroventricular Leptin Infusion Attenuates Cardiac Dysfunction After Myocardial Infarction. FASEB Journal, 2019, 33, 830.6.	0.2	0
205	Impact of maternal obesity on body weight regulation and sleep time in offspring. FASEB Journal, 2019, 33, 753.4.	0.2	0
206	Differential Regulation of Cardiac Substrate Utilization in Response to Chronic Central Nervous System Administration of Leptin and Melanotan II in Rats with Myocardial Infarction. FASEB Journal, 2019, 33, 532.10.	0.2	0
207	TRPC6 deficiency causes increased body weight and glucose intolerance in mice fed a normal diet but does not amplify the obesogenic effect of a high fat diet. FASEB Journal, 2020, 34, 1-1.	0.2	0
208	Highâ€Frequency 4D Ultrasound Evaluation of Temporal Changes in Endocardial Surface Strain after Myocardial Infarction. FASEB Journal, 2022, 36, .	0.2	0
209	Metabolic Reprogramming Mediates Macrophage Polarization After Myocardial Infarction. FASEB Journal, 2022, 36, .	0.2	0
210	Parental Obesity Alters Offspring Blood Pressure Regulation and Cardiovascular Responses to Stress: Role of P2X7R and Sex Differences. FASEB Journal, 2022, 36, .	0.2	0