## Alexander Kauffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2329998/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy. Journal of Materials<br>Science and Technology, 2022, 100, 237-245.                               | 10.7 | 16        |
| 2  | On the impact of the mesostructure on the creep response of cellular NiAl-Mo eutectics. Acta<br>Materialia, 2022, 226, 117626.                                            | 7.9  | 4         |
| 3  | Revealing the Role of Cross Slip for Serrated Plastic Deformation in Concentrated Solid Solutions at Cryogenic Temperatures. Metals, 2022, 12, 514.                       | 2.3  | 1         |
| 4  | Highâ€Temperature Ternary Oxide Phases in Tantalum/Niobium–Alumina Composite Materials. Advanced<br>Engineering Materials, 2022, 24, .                                    | 3.5  | 6         |
| 5  | Microstructural and chemical constitution of the oxide scale formed on a pesting-resistant Mo-Si-Ti alloy. Corrosion Science, 2021, 178, 109081.                          | 6.6  | 13        |
| 6  | Characterization of the Microstructure after Composite Peening of Aluminum. Advanced Engineering<br>Materials, 2021, 23, 2000575.                                         | 3.5  | 2         |
| 7  | Influence of Temperature and Plastic Strain on Deformation Mechanisms and Kink Band Formation in Homogenized HfNbTaTiZr. Crystals, 2021, 11, 81.                          | 2.2  | 5         |
| 8  | Current Status of Research on the Oxidation Behavior of Refractory High Entropy Alloys. Advanced<br>Engineering Materials, 2021, 23, 2001047.                             | 3.5  | 99        |
| 9  | Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi. Scripta Materialia, 2021, 194, 113667.                                                            | 5.2  | 66        |
| 10 | Oxidation Resistance, Creep Strength and Room-Temperature Fracture Toughness of<br>Mo–28Ti–14Si–6C–6B Alloy. Materialia, 2021, 16, 101108.                                | 2.7  | 2         |
| 11 | Deformation mechanisms of CoCrFeMnNi high-entropy alloy under low-cycle-fatigue loading. Acta<br>Materialia, 2021, 215, 117089.                                           | 7.9  | 44        |
| 12 | Microstructure tailoring of Al-containing compositionally complex alloys by controlling the sequence of precipitation and ordering. Acta Materialia, 2021, 218, 117217.   | 7.9  | 18        |
| 13 | Grain boundary engineering and its implications on corrosion behavior of equiatomic CoCrFeMnNi<br>high entropy alloy. Journal of Alloys and Compounds, 2021, 888, 161500. | 5.5  | 25        |
| 14 | The Creep and Oxidation Behaviour of Pesting-Resistant (Mo,Ti)5Si3-Containing Eutectic-Eutectoid<br>Mo-Si-Ti Alloys. Metals, 2021, 11, 169.                               | 2.3  | 3         |
| 15 | Flexible Powder Production for Additive Manufacturing of Refractory Metal-Based Alloys. Metals, 2021, 11, 1723.                                                           | 2.3  | 5         |
| 16 | Solid solution strengthening and deformation behavior of single-phase Cu-base alloys under<br>tribological load. Acta Materialia, 2020, 185, 300-308.                     | 7.9  | 24        |
| 17 | Characterisation of the oxidation and creep behaviour of novel Mo-Si-Ti alloys. Acta Materialia, 2020,<br>184, 132-142.                                                   | 7.9  | 35        |
| 18 | Effect of Water Vapor on the Oxidation Behavior of the Eutectic Highâ€Temperature Alloy Moâ€20Siâ€52.8Ti.<br>Advanced Engineering Materials, 2020, 22, 2000219.           | 3.5  | 2         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Microstructural Investigations of Novel High Temperature Alloys Based on NiAl-(Cr,Mo). Metals, 2020, 10, 961.                                                                                                                     | 2.3 | 11        |
| 20 | Formation of complex intermetallic phases in novel refractory high-entropy alloys NbMoCrTiAl and<br>TaMoCrTiAl: Thermodynamic assessment and experimental validation. Journal of Alloys and<br>Compounds, 2020, 842, 155726.      | 5.5 | 31        |
| 21 | Microstructural changes in CoCrFeMnNi under mild tribological load. Journal of Materials Science, 2020, 55, 12353-12372.                                                                                                          | 3.7 | 14        |
| 22 | Effect of Y Additions on the Oxidation Behaviour of Novel Refractory High-Entropy Alloy NbMoCrTiAl at 1000°C in Air. Oxidation of Metals, 2020, 94, 147-163.                                                                      | 2.1 | 9         |
| 23 | High-temperature low cycle fatigue behavior of an equiatomic CoCrFeMnNi high-entropy alloy.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2020, 791, 139781.          | 5.6 | 37        |
| 24 | On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys.<br>Journal of Materials Research and Technology, 2020, 9, 8556-8567.                                                              | 5.8 | 27        |
| 25 | Controlling crystallographic ordering in Mo–Cr–Ti–Al high entropy alloys to enhance ductility.<br>Journal of Alloys and Compounds, 2020, 823, 153805.                                                                             | 5.5 | 27        |
| 26 | A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures.<br>Corrosion Science, 2020, 166, 108475.                                                                                        | 6.6 | 63        |
| 27 | On the oxidation mechanism of refractory high entropy alloys. Corrosion Science, 2019, 159, 108161.                                                                                                                               | 6.6 | 119       |
| 28 | Microstructural evolution during creep of lamellar eutectoid and off-eutectoid FeAl/FeAl2 alloys.<br>Intermetallics, 2019, 107, 116-125.                                                                                          | 3.9 | 4         |
| 29 | Constitution, oxidation and creep of eutectic and eutectoid Mo-Si-Ti alloys. Intermetallics, 2019, 104, 133-142.                                                                                                                  | 3.9 | 44        |
| 30 | Development of Oxidation Resistant Refractory High Entropy Alloys for High Temperature<br>Applications: Recent Results and Development Strategy. Minerals, Metals and Materials Series, 2018, ,<br>647-659.                       | 0.4 | 5         |
| 31 | Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 763-771.                                               | 2.2 | 7         |
| 32 | Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al. Materials at High Temperatures, 2018, 35, 168-176.                                           | 1.0 | 54        |
| 33 | Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High<br>Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2018, 49, 772-781. | 2.2 | 91        |
| 34 | Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. Journal of Materials Research, 2018, 33, 3287-3300.                                                                                                         | 2.6 | 56        |
| 35 | Exchange Bias Effect along Vertical Interfaces in La0.7Sr0.3MnO3:NiO Vertically Aligned<br>Nanocomposite Thin Films Integrated on Silicon Substrates. Crystal Growth and Design, 2018, 18,<br>4388-4394.                          | 3.0 | 33        |
| 36 | High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition.<br>Oxidation of Metals, 2017, 88, 339-349.                                                                                    | 2.1 | 126       |

Alexander Kauffmann

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combinatorial exploration of the High Entropy Alloy System Co-Cr-Fe-Mn-Ni. Surface and Coatings Technology, 2017, 325, 174-180.                                                                                                             | 4.8 | 43        |
| 38 | Enhanced Oxidation Resistance of Mo–Si–B–Ti Alloys by Pack Cementation. Oxidation of Metals, 2017,<br>88, 267-277.                                                                                                                          | 2.1 | 23        |
| 39 | Creep of binary Fe-Al alloys with ultrafine lamellar microstructures. Intermetallics, 2017, 90, 180-187.                                                                                                                                    | 3.9 | 16        |
| 40 | Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System. Metals, 2017, 7, 135.                                                                                                                           | 2.3 | 25        |
| 41 | Microstructure Formation and Resistivity Change in CuCr during Rapid Solidification. Metals, 2017, 7, 478.                                                                                                                                  | 2.3 | 10        |
| 42 | Orientation relationship of eutectoid FeAl and FeAl <sub>2</sub> . Journal of Applied Crystallography, 2016, 49, 442-449.                                                                                                                   | 4.5 | 15        |
| 43 | High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb 20Mo 20Cr<br>20Ti 20Al with and without Si addition. Journal of Alloys and Compounds, 2016, 688, 468-477.                                             | 5.5 | 163       |
| 44 | Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and<br>Thermal Stability. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2016, 47, 4226-4238.          | 2.2 | 23        |
| 45 | Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. Journal of Alloys and Compounds, 2016, 661, 206-215.                                                 | 5.5 | 171       |
| 46 | Thermal stability of electrical and mechanical properties of cryo-drawn Cu and CuZr wires. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016,<br>651, 567-573.                    | 5.6 | 15        |
| 47 | Microstructure Evolution in a New Refractory High-Entropy Alloy W-Mo-Cr-Ti-Al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 961-970.                                                    | 2.2 | 28        |
| 48 | Efficiency of the refinement by deformation twinning in wire drawn single phase copper alloys.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 624, 71-78.                  | 5.6 | 16        |
| 49 | Solute redistribution during annealing of a cold rolled Cu–Ag alloy. Journal of Alloys and Compounds, 2015, 623, 96-103.                                                                                                                    | 5.5 | 17        |
| 50 | Dynamic recrystallisation and precipitation behaviour of high strength and highly conducting<br>Cu–Ag–Zr-alloys. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2014, 597, 139-147. | 5.6 | 42        |
| 51 | Mechanism of nanostructure formation in ball-milled Cu and Cu–3wt%Zn studied by X-ray diffraction<br>line profile analysis. Journal of Alloys and Compounds, 2014, 588, 138-143.                                                            | 5.5 | 6         |
| 52 | Assessment of the thermodynamic dimension of the stacking fault energy. Philosophical Magazine, 2014, 94, 2967-2979.                                                                                                                        | 1.6 | 22        |
| 53 | Glow discharge plasma as a surface preparation tool for microstructure investigations. Materials Characterization, 2014, 91, 76-88.                                                                                                         | 4.4 | 17        |
| 54 | Microstructure evolution during annealing of an SPD- processed supersaturated Cu – 3 at.% Ag alloy.<br>IOP Conference Series: Materials Science and Engineering, 2014, 63, 012091.                                                          | 0.6 | 5         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                  | IF                  | CITATIONS         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| 55 | Properties of cryo-drawn copper with severely twinned microstructure. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 132-141.                                                                                                                                                         | 5.6                 | 21                |
| 56 | Grain Refinement and Deformation Mechanisms in Room Temperature Severe Plastic Deformed Mg-AZ31.<br>Metals, 2013, 3, 283-297.                                                                                                                                                                                                                            | 2.3                 | 22                |
| 57 | High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Materialia, 2013, 61, 228-238.                                                                                                                                                                                     | 7.9                 | 110               |
| 58 | Processing of Intermetallic Titanium Aluminide Wires. Metals, 2013, 3, 188-201.                                                                                                                                                                                                                                                                          | 2.3                 | 15                |
| 59 | Twinning Phenomena along and beyond the Bain Path. Metals, 2013, 3, 319-336.                                                                                                                                                                                                                                                                             | 2.3                 | 12                |
| 60 | Isotropic behavior of critical current for MgB2 ex situ tapes with 5 wt.% carbon addition. Physica C:<br>Superconductivity and Its Applications, 2012, 483, 222-224.                                                                                                                                                                                     | 1.2                 | 3                 |
| 61 | \$J_{m c}\$ Scaling and Anisotropies in Co-Doped Ba-122 Thin Films. IEEE Transactions on Applied Superconductivity, 2011, 21, 2887-2890.                                                                                                                                                                                                                 | 1.7                 | 22                |
| 62 | Critical Current Scaling and Anisotropy in Oxypnictide Superconductors. Physical Review Letters, 2011, 106, 137001.                                                                                                                                                                                                                                      | 7.8                 | 60                |
| 63 | Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2011, 529, 230-236.                                                                                                                           | 5.6                 | 88                |
| 64 | Appearance of dislocation-mediated and twinning-induced plasticity in an engineering-grade FeMnNiCr<br>alloy. Acta Materialia, 2011, 59, 7711-7723.                                                                                                                                                                                                      | 7.9                 | 32                |
| 65 | Severe deformation twinning in pure copper by cryogenic wire drawing. Acta Materialia, 2011, 59, 7816-7823.                                                                                                                                                                                                                                              | 7.9                 | 39                |
| 66 | Microstructural inhomogeneities in Cu–Ag–Zr alloys due to heavy plastic deformation. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010,<br>527, 606-613.                                                                                                                                       | 5.6                 | 19                |
| 67 | Damascene Lightâ€Weight Metals. Advanced Engineering Materials, 2010, 12, 1191-1197.                                                                                                                                                                                                                                                                     | 3.5                 | 10                |
| 68 | Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010,<br>527, 7624-7630.                                                                                                                                    | 5.6                 | 147               |
| 69 | Studies on recrystallization of single-phase copper alloys by resistance measurements. Acta<br>Materialia, 2010, 58, 2324-2329.                                                                                                                                                                                                                          | 7.9                 | 40                |
| 70 | Irreversibility field up to 42 T of GdBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-Î′</sub> thin films grown by PLD and its dependence on deposition parameters. Superconductor Science and Technology, 2010, 23, 105017.                                                                                                                                    | 3.5                 | 10                |
| 71 | High Upper Critical Fields and Evidence of Weak-Link Benavior in Superconducting <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:msub><mml:mi>LaFeAsO</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'mathvariant="bold"&gt;F<mml:mi>x</mml:mi></mml:mo></mml:mrow></mml:msub>Thin Films. Physical</mml:math<br> | nn <b>7l:s</b> no>< | m <b>mı:</b> mi>x |