Peng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328955/publications.pdf

Version: 2024-02-01

201385 189595 27,164 45 27 50 h-index citations g-index papers 55 55 55 47540 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characteristics of SARS-CoV-2 transmission in a medium-sized city with traditional communities during the early COVID-19 epidemic in China. Virologica Sinica, 2022, 37, 187-197.	1.2	4
2	A 1-year longitudinal study on COVID-19 convalescents reveals persistence of anti-SARS-CoV-2 humoral and cellular immunity. Emerging Microbes and Infections, 2022, 11, 902-913.	3.0	7
3	ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2022, 7, 83.	7.1	88
4	Single-Cell Landscape of Lungs Reveals Key Role of Neutrophil-Mediated Immunopathology during Lethal SARS-CoV-2 Infection. Journal of Virology, 2022, 96, e0003822.	1.5	7
5	Broad Cell Tropism of SADS-CoV In Vitro Implies Its Potential Cross-Species Infection Risk. Virologica Sinica, 2021, 36, 559-563.	1.2	31
6	Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021, 19, 141-154.	13.6	3,334
7	SARS-CoV-2 spillover events. Science, 2021, 371, 120-122.	6.0	96
8	Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. Emerging Microbes and Infections, 2021, 10, 1507-1514.	3.0	47
9	Whole-Genome Sequencing of Pathogens in : A Target-Enrichment Approach for SARS-CoV-2. Methods in Molecular Biology, 2021, 2327, 119-137.	0.4	O
10	Severe acute respiratory syndrome (SARS) related coronavirus in bats. Animal Diseases, 2021, 1, 4.	0.6	4
11	Protective Efficacy of Inactivated Vaccine against SARS-CoV-2 Infection in Mice and Non-Human Primates. Virologica Sinica, 2021, 36, 879-889.	1.2	17
12	SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism. Signal Transduction and Targeted Therapy, 2021, 6, 345.	7.1	30
13	Serological investigation of asymptomatic cases of SARS-CoV-2 infection reveals weak and declining antibody responses. Emerging Microbes and Infections, 2021, 10, 905-912.	3.0	16
14	Antibody-Dependent Enhancement of SARS-CoV-2 Infection of Human Immune Cells: In Vitro Assessment Provides Insight in COVID-19 Pathogenesis. Viruses, 2021, 13, 2483.	1.5	11
15	SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduction and Targeted Therapy, 2020, 5, 235.	7.1	272
16	Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Annals of Internal Medicine, 2020, 172, 629-632.	2.0	396
17	Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Annals of Internal Medicine, 2020, 173, 324.	2.0	42
18	Prolonged shedding of severe acute respiratory syndrome coronavirus 2 in patients with COVID-19. Emerging Microbes and Infections, 2020, 9, 2571-2577.	3.0	65

#	Article	IF	CITATIONS
19	Dynamic Changes of Antibodies to SARS-CoV-2 in COVID-19 Patients at Early Stage of Outbreak. Virologica Sinica, 2020, 35, 744-751.	1.2	31
20	Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection. Cell Reports, 2020, 33, 108345.	2.9	41
21	Analysis of 2019 novel coronavirus infection and clinical characteristics of outpatients: An epidemiological study from a fever clinic in Wuhan, China. Journal of Medical Virology, 2020, 92, 2758-2767.	2.5	38
22	The epidemiology and clinical characteristics of coâ€infection of SARSâ€CoVâ€2 and influenza viruses in patients during COVIDâ€19 outbreak. Journal of Medical Virology, 2020, 92, 2870-2873.	2.5	131
23	A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270-273.	13.7	17,004
24	Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 2020, 30, 670-677.	5.7	194
25	Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes and Infections, 2020, 9, 386-389.	3.0	1,471
26	Discovery of Bat Coronaviruses through Surveillance and Probe Capture-Based Next-Generation Sequencing. MSphere, 2020, 5, .	1.3	73
27	Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Cell, 2020, 182, 50-58.e8.	13.5	502
28	Apibacter raozihei sp. nov. isolated from bat feces of Hipposideros and Taphozous spp International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 611-617.	0.8	9
29	Serological evidence of MERS-CoV and HKU8-related CoV co-infection in Kenyan camels. Emerging Microbes and Infections, 2019, 8, 1528-1534.	3.0	18
30	Bat Coronaviruses in China. Viruses, 2019, 11, 210.	1.5	434
31	Characterization of a filovirus (MÄ>nglà virus) from Rousettus bats in China. Nature Microbiology, 2019, 4, 390-395.	5.9	116
32	Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches. Journal of General Virology, 2019, 100, 1363-1374.	1.3	27
33	Dampened STING-Dependent Interferon Activation in Bats. Cell Host and Microbe, 2018, 23, 297-301.e4.	5.1	206
34	Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556, 255-258.	13.7	565
35	Genetic Evidence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) and Widespread Seroprevalence among Camels in Kenya. Virologica Sinica, 2018, 33, 484-492.	1.2	42
36	IFNAR2-dependent gene expression profile induced by IFN- \hat{l}_{\pm} in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection. PLoS ONE, 2017, 12, e0182866.	1.1	30

#	Article	IF	Citations
37	Contraction of the type I IFN locus and unusual constitutive expression of $\langle i \rangle$ IFN- $\hat{l} \pm \langle j \rangle$ in bats. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2696-2701.	3.3	272
38	Identification of immunogenic determinants of the spike protein of SARS-like coronavirus. Virologica Sinica, 2013, 28, 92-96.	1.2	7
39	Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. Journal of General Virology, 2012, 93, 275-281.	1.3	27
40	Metagenomic Analysis of Viruses from Bat Fecal Samples Reveals Many Novel Viruses in Insectivorous Bats in China. Journal of Virology, 2012, 86, 4620-4630.	1.5	185
41	Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. Journal of General Virology, 2010, 91, 1058-1062.	1.3	96
42	Indirect Enzyme-Linked Immunosorbent Assay based on the nucleocapsid protein of SARS-like coronaviruses. Virologica Sinica, 2009, 24, 146-151.	1.2	2
43	Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications, 2009, 387, 326-329.	1.0	5
44	Difference in Receptor Usage between Severe Acute Respiratory Syndrome (SARS) Coronavirus and SARS-Like Coronavirus of Bat Origin. Journal of Virology, 2008, 82, 1899-1907.	1.5	145
45	Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. Journal of General Virology, 2006, 87, 3355-3359.	1.3	96