
Rikako Sanuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328748/publications.pdf Version: 2024-02-01

RIKAKO SANILIKI

#	Article	IF	CITATIONS
1	TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 332-337.	7.1	252
2	miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nature Neuroscience, 2011, 14, 1125-1134.	14.8	252
3	Functional Roles of Otx2 Transcription Factor in Postnatal Mouse Retinal Development. Molecular and Cellular Biology, 2007, 27, 8318-8329.	2.3	181
4	An Essential Role for RAX Homeoprotein and NOTCH–HES Signaling in <i>Otx2</i> Expression in Embryonic Retinal Photoreceptor Cell Fate Determination. Journal of Neuroscience, 2011, 31, 16792-16807.	3.6	110
5	Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nature Immunology, 2017, 18, 1342-1352.	14.5	83
6	Identification of Autoantibodies against TRPM1 in Patients with Paraneoplastic Retinopathy Associated with ON Bipolar Cell Dysfunction. PLoS ONE, 2011, 6, e19911.	2.5	81
7	TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Molecular Vision, 2010, 16, 425-37.	1.1	81
8	<i>Prdm13</i> Regulates Subtype Specification of Retinal Amacrine Interneurons and Modulates Visual Sensitivity. Journal of Neuroscience, 2015, 35, 8004-8020.	3.6	54
9	Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina. Molecular and Cellular Biology, 2015, 35, 2583-2596.	2.3	46
10	Tropisms of AAV for Subretinal Delivery to the Neonatal Mouse Retina and Its Application for In Vivo Rescue of Developmental Photoreceptor Disorders. PLoS ONE, 2013, 8, e54146.	2.5	45
11	G9a Histone Methyltransferase Activity in Retinal Progenitors Is Essential for Proper Differentiation and Survival of Mouse Retinal Cells. Journal of Neuroscience, 2012, 32, 17658-17670.	3.6	43
12	Protein-4.1G-Mediated Membrane Trafficking Is Essential for Correct Rod Synaptic Location in the Retina and for Normal Visual Function. Cell Reports, 2015, 10, 796-808.	6.4	19
13	<i>Panky</i> , a novel photoreceptorâ€specific ankyrin repeat protein, is a transcriptional cofactor that suppresses CRXâ€regulated photoreceptor genes. FEBS Letters, 2010, 584, 753-758.	2.8	18
14	Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. International Journal of Molecular Sciences, 2021, 22, 5919.	4.1	18
15	Involvement of 101F6, a Homologue of Cytochrome b561, in the Reduction of Ferric Ions. Journal of Biochemistry, 2007, 142, 699-705.	1.7	16
16	Normal aging hyperactivates innate immunity and reduces the medical efficacy of minocycline in brain injury. Brain, Behavior, and Immunity, 2019, 80, 427-438.	4.1	15
17	Direct fermentative conversion of poly(ethylene terephthalate) into poly(hydroxyalkanoate) by Ideonella sakaiensis. Scientific Reports, 2021, 11, 19991.	3.3	14
18	Overexpression of neural miRNAs miRâ€9/9* and miRâ€124 suppresses differentiation to MÃ1⁄4ller glia and promotes differentiation to neurons in mouse retina in vivo. Genes To Cells, 2020, 25, 741-752.	1.2	10

RIKAKO SANUKI

#	Article	IF	CITATIONS
19	Recurrent <scp><i>NFIA</i> K125E</scp> substitution represents a lossâ€ofâ€function allele: Sensitive in vitro and in vivo assays forÂnontruncating alleles. American Journal of Medical Genetics, Part A, 2021, 185, 2084-2093.	1.2	9
20	The <i>Drosophila Neprilysin 4</i> gene is essential for sperm function following sperm transfer to females. Genes and Genetic Systems, 2021, 96, 177-186.	0.7	3
21	i Drosophila i models of traumatic brain injury. Frontiers in Bioscience - Landmark, 2020, 25, 168-178.	3.0	2