Jin Miyawaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328600/publications.pdf

Version: 2024-02-01

161	6,455	41	75
papers	citations	h-index	g-index
162	162	162	7581 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Thermophysical Characteristics of Novel Biomass-Derived Activated Carbon as a Function of Synthesis Parameters. Heat Transfer Engineering, 2022, 43, 1694-1707.	1.9	9
2	Study on the applicability of pressurized physically activated carbon as an adsorbent in adsorption heat pumps. RSC Advances, 2022, 12, 2558-2563.	3.6	4
3	Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. Bulletin of the Chemical Society of Japan, 2022, 95, 73-103.	3.2	39
4	Correlation between molecular stacking and anisotropic texture in spinnable mesophase pitch. Carbon, 2022, 192, 395-404.	10.3	13
5	Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers. Journal of Power Sources, 2021, 482, 228903.	7.8	28
6	Carbon from Bagasse Activated with Water Vapor and Its Adsorption Performance for Methylene Blue. Applied Sciences (Switzerland), 2021, 11, 678.	2.5	25
7	Highly Microporous Activated Carbon from Acorn Nutshells and its Performance in Water Vapor Adsorption. Evergreen, 2021, 8, 249-254.	0.5	3
8	Effect of blending on hydrotreating reactivities of atmospheric residues: Synergistic effects. Fuel, 2021, 293, 120429.	6.4	6
9	Theoretical dehumidification capacity of acorn nutshell-based activated carbon under two Asian urban cities' ambient air condition. International Journal of Refrigeration, 2021, 131, 137-145.	3.4	4
10	Structural pore elucidation of super-activated carbon based on the micro-domain structure model. Journal of Industrial and Engineering Chemistry, 2021, 101, 186-194.	5.8	3
11	Effect of pore size in activated carbon on the response characteristic of electric double layer capacitor. Journal of Industrial and Engineering Chemistry, 2021, 102, 321-326.	5.8	9
12	Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 2021, 183, 735-742.	10.3	37
13	Development of biomass based-activated carbon for adsorption dehumidification. Energy Reports, 2021, 7, 5871-5884.	5.1	17
14	Thermophysical and Adsorption Characteristics of Waste Biomass-Derived Activated Carbons. , 2020, , 617-628.		3
15	Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon, 2020, 158, 922-929.	10.3	43
16	Behaviors of Cellulose-Based Activated Carbon Fiber for Acetaldehyde Adsorption at Low Concentration. Applied Sciences (Switzerland), 2020, 10, 25.	2.5	7
17	Enhancing water adsorption capacity of acorn nutshell based activated carbon for adsorption thermal energy storage application. Energy Reports, 2020, 6, 255-263.	5.1	34
18	Pore-size-selective control of surface properties of porous carbons by molecular masking. Carbon, 2020, 170, 380-383.	10.3	2

#	Article	IF	CITATIONS
19	¹⁹ F <i>Ex Situ</i> Solid-State NMR Study on Structural Differences in Pores of Activated Carbon Series Derived from Chemical and Physical Activation Processes for EDLCs. Journal of Physical Chemistry C, 2020, 124, 12457-12465.	3.1	6
20	A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons. Applied Energy, 2020, 264, 114720.	10.1	53
21	Highly Chlorinated Polyvinyl Chloride as a Novel Precursor for Fibrous Carbon Material. Polymers, 2020, 12, 328.	4.5	6
22	Establishment of Innovative Carbon Nanofiber Synthesis Technology Utilizing Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 3844-3852.	6.7	6
23	Cation induced microstructure and viscosity variation of molten synthetic slag analyzed by solid-state NMR. Fuel, 2020, 267, 117310.	6.4	12
24	Carbon Waste Powder Prepared from Carbon Rod Waste of Zinc-Carbon Batteries for Methyl Orange Adsorption. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 66-73.	1.1	2
25	Environmental-friendly production of carbon fiber from isotropic hybrid pitches synthesized from waste biomass and polystyrene with ethylene bottom oil. Journal of Cleaner Production, 2019, 239, 118025.	9.3	17
26	Toward development of activated carbons with enhanced effective adsorption amount by control of activation process. AIP Conference Proceedings, 2019 , , .	0.4	1
27	Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde. Journal of Industrial and Engineering Chemistry, 2019, 80, 98-105.	5.8	26
28	Enhancement of First Cycle Coulombic Efficiency of Hard Carbon Derived from Eucalyptus in a Sodium lon Battery. Chemistry Letters, 2019, 48, 753-755.	1.3	10
29	Interaction of Vanadyl Complexes in Atmospheric Residue with Their Matrixes: An ESR Study in a Temperature Range up to 170 °C. Journal of Physical Chemistry C, 2019, 123, 20587-20593.	3.1	4
30	Modification of thermal transport in an individual carbon nanofiber by focused ion beam irradiation. Carbon, 2019, 153, 539-544.	10.3	7
31	Changes in Composition and Molecular Structures of Atmospheric Residues during Hydrotreating. Energy &	5.1	10
32	Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis. Carbon Letters, 2019, 29, 307-317.	5.9	12
33	Synthesis of surface-replicated ultra-thin silica hollow nanofibers using structurally different carbon nanofibers as templates. Journal of Solid State Chemistry, 2019, 272, 21-26.	2.9	8
34	Structural effects on the enhancement of first-cycle Coulombic efficiency of mangrove-derived hard carbon as an anode material in sodium ion batteries. SN Applied Sciences, 2019, 1, 1.	2.9	6
35	Ultra-deep Desulfurization Process of Diesel Fuel with Adsorption Treatment. Journal of the Japan Petroleum Institute, 2019, 62, 61-66.	0.6	3
36	Effect of the pre-treated pyrolysis fuel oil: coal tar pitch ratio on the spinnability and oxidation properties of isotropic pitch precursors and the mechanical properties of derived carbon fibers. Carbon Letters, 2019, 29, 193-202.	5.9	14

#	Article	IF	Citations
37	Shortening Stabilization Time Using Pressurized Air Flow in Manufacturing Mesophase Pitch-Based Carbon Fiber. Polymers, 2019, 11, 1911.	4.5	19
38	Optimization of the calcination temperature for the solvent-deficient synthesis of nanocrystalline gamma-alumina. Chemical Papers, 2019, 73, 901-907.	2.2	2
39	Calcination effect of borate-bearing hydroxyapatite on the mobility of borate. Journal of Hazardous Materials, 2018, 344, 90-97.	12.4	7
40	Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride. Journal of Industrial and Engineering Chemistry, 2018, 67, 358-364.	5.8	16
41	Hydrotreating Reactivities of Atmospheric Residues and Correlation with Their Composition and Properties. Energy & Energ	5.1	14
42	Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride. Journal of Industrial and Engineering Chemistry, 2018, 67, 276-283.	5.8	34
43	Adsorption of Difluoromethane (HFC-32) onto phenol resin based adsorbent: Theory and experiments. International Journal of Heat and Mass Transfer, 2018, 127, 348-356.	4.8	22
44	Solvent-deficient synthesis of nanocrystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ powder. Processing and Application of Ceramics, 2018, 12, 342-349.	0.8	6
45	Recognition and applications of hierarchical domain structural analysis for synthetic carbons. Tanso, 2018, 2018, 99-107.	0.1	4
46	Dimensional control of tubular-type carbon nanofibers via pyrolytic carbon coating. Journal of Materials Science, 2017, 52, 5165-5178.	3.7	2
47	Study toward high-performance thermally driven air-conditioning systems. AIP Conference Proceedings, 2017, , .	0.4	5
48	Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons. Applied Thermal Engineering, 2017, 122, 389-397.	6.0	44
49	Highly graphitized carbon from non-graphitizable raw material and its formation mechanism based on domain theory. Carbon, 2017, 121, 301-308.	10.3	68
50	Effects of Blending and Heat-Treating on Composition and Distribution of SARA Fractions of Atmospheric Residues. Energy & Energy	5.1	10
51	Studying Rotational Mobility of Vâ•O Complexes in Atmospheric Residues and Their Resins and Asphaltenes by Electron Spin Resonance. Energy & Samp; Fuels, 2017, 31, 4748-4757.	5.1	14
52	Study on biomass derived activated carbons for adsorptive heat pump application. International Journal of Heat and Mass Transfer, 2017, 110, 7-19.	4.8	85
53	Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon, 2017, 114, 98-105.	10.3	97
54	Examining the molecular entanglement between Vi€O complexes and their matrices in atmospheric residues by ESR. RSC Advances, 2017, 7, 37908-37914.	3.6	11

#	Article	IF	CITATIONS
55	Molecular simulation aided nanoporous carbon design for highly efficient low-concentrated formaldehyde capture. Carbon, 2017, 124, 152-160.	10.3	30
56	Enhancement of fluoride immobilization in apatite by Al 3+ additives. Chemical Engineering Journal, 2017, 311, 284-292.	12.7	7
57	Preparation of isotropic spinnable pitch and carbon fiber by the bromination–dehydrobromination of biotar and ethylene bottom oil mixture. Journal of Materials Science, 2017, 52, 1165-1171.	3.7	26
58	Improvement of Electric Conductivity of Non-graphitizable Carbon Material via Breaking-down and Merging of the Microdomains. Evergreen, 2017, 4, 16-20.	0.5	0
59	Interfacial effects of MgO in hydroxylated calcined dolomite on the co-precipitation of borates with hydroxyapatite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 1-10.	4.7	6
60	C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon, 2016, 103, 28-35.	10.3	40
61	Preparation of pitch based carbon fibers using Hyper-coal as a raw material. Carbon, 2016, 106, 28-36.	10.3	69
62	Fast Water Relaxation through Oneâ€Dimensional Channels by Rapid Energy Transfer. ChemPhysChem, 2016, 17, 3409-3415.	2.1	5
63	Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries. Electrochimica Acta, 2016, 213, 432-438.	5.2	31
64	Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. Journal of Industrial and Engineering Chemistry, 2016, 34, 397-404.	5.8	44
65	Enhancement of the rate performance of plasma-treated platelet carbon nanofiber anodes in lithium-ion batteries. RSC Advances, 2016, 6, 4810-4817.	3.6	2
66	Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon, 2016, 99, 649-657.	10.3	67
67	Removal mechanism of high concentration borate by co-precipitation with hydroxyapatite. Journal of Environmental Chemical Engineering, 2016, 4, 1092-1101.	6.7	16
68	Influence of Pore Size and Surface Functionality of Activated Carbons on Adsorption Behaviors of Indole and Amylase. Evergreen, 2016, 3, 17-24.	0.5	2
69	The crystalline and microstructural transformations of two coal ashes and their quenched slags with similar chemical compositions during heat treatment. Journal of Industrial and Engineering Chemistry, 2015, 22, 110-119.	5.8	10
70	Analysis of the transformation behaviors of a Chinese coal ash using <i>in</i> exâ€situ XRD and SEMâ€EXD. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 105-111.	1.5	6
71	Synthesis and characterization of high-softening-point methylene-bridged pitches by visible light irradiation assisted free-radical bromination. Carbon, 2015, 95, 780-788.	10.3	34
72	Mechanism of boron uptake by hydrocalumite calcined at different temperatures. Journal of Hazardous Materials, 2015, 287, 268-277.	12.4	35

#	Article	IF	CITATIONS
73	Effect of the Size and Position of Ion-Accessible Nanoholes on the Specific Capacitance of Single-Walled Carbon Nanohorns for Supercapacitor Applications. Journal of Physical Chemistry C, 2015, 119, 2935-2940.	3.1	32
74	Sorption of H 3 BO 3 $/B(OH)$ 4 \hat{a}^{2} on calcined LDHs including different divalent metals. Journal of Colloid and Interface Science, 2015, 445, 183-194.	9.4	34
75	Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch. Carbon, 2015, 94, 432-438.	10.3	109
76	Sorption properties of boron on Mg–Al bimetallic oxides calcined at different temperatures. Separation and Purification Technology, 2015, 152, 192-199.	7.9	5
77	Adsorption of ethanol onto phenol resin based adsorbents for developing next generation cooling systems. International Journal of Heat and Mass Transfer, 2015, 81, 171-178.	4.8	78
78	Current features of traditional carbon materials. Tanso, 2015, 2015, 138-144.	0.1	0
79	Low-temperature catalytic conversion of lignite: 1. Steam gasification using potassium carbonate supported on perovskite oxide. Journal of Industrial and Engineering Chemistry, 2014, 20, 216-221.	5.8	20
80	Contribution of boron-specific resins containing N-methylglucamine groups to immobilization of borate/boric acid in a permeable reactive barrier comprising agglomerated MgO. Desalination, 2014, 337, 109-116.	8.2	11
81	Low-temperature catalytic conversion of lignite: 3. Tar reforming using the supported potassium carbonate. Journal of Industrial and Engineering Chemistry, 2014, 20, 9-12.	5.8	19
82	Adsorption of ethanol onto parent and surface treated activated carbon powders. International Journal of Heat and Mass Transfer, 2014, 73, 445-455.	4.8	89
83	Direct Detection of Al–O–Al Structure in Aluminosilicate Specimens: A Use of Homo-Nuclear DQMAS NMR. Applied Magnetic Resonance, 2014, 45, 111-123.	1.2	7
84	Hydrotreatment of two atmospheric residues from Kuwait Export and Lower Fars crude oils. Fuel, 2014, 117, 191-197.	6.4	11
85	TiO2-entrained tubular carbon nanofiber and its electrochemical properties in the rechargeable Na-ion battery system. Applied Thermal Engineering, 2014, 72, 309-314.	6.0	7
86	Quantitative analysis of BF4â^' ions infiltrated into micropores of activated carbon fibers using nuclear magnetic resonance. RSC Advances, 2014, 4, 16726.	3.6	7
87	Two-Dimensional Materials as Emulsion Stabilizers: Interfacial Thermodynamics and Molecular Barrier Properties. Langmuir, 2014, 30, 3687-3696.	3.5	95
88	Influence of surface functionalities on ethanol adsorption characteristics in activated carbons for adsorption heat pumps. Applied Thermal Engineering, 2014, 72, 160-165.	6.0	21
89	Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal–air batteries: A fundamental reason. Carbon, 2014, 80, 698-707.	10.3	24
90	Sorption of borate onto layered double hydroxides assembled on filter paper through in situ hydrothermal crystallization. Applied Clay Science, 2014, 88-89, 134-143.	5.2	5

#	Article	IF	Citations
91	Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments. Fuel, 2014, 118, 257-264.	6.4	163
92	One-step synthesis of layered double hydroxide-intercalated gluconate for removal of borate. Separation and Purification Technology, 2014, 123, 114-123.	7.9	27
93	Low-temperature catalytic conversion of lignite: 2. Recovery and reuse of potassium carbonate supported on perovskite oxide in steam gasification. Journal of Industrial and Engineering Chemistry, 2014, 20, 194-201.	5.8	12
94	Adsorption characteristics of ethanol onto functional activated carbons with controlled oxygen content. Applied Thermal Engineering, 2014, 72, 211-218.	6.0	64
95	Microstructural transformations of two representative slags at high temperatures and effects on the viscosity. Journal of Industrial and Engineering Chemistry, 2014, 20, 1338-1345.	5.8	29
96	Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon, 2014, 77, 747-755.	10.3	83
97	MAS, STMAS and DQMAS NMR Studies of the Thermal Transformation of Kaolinite. Applied Magnetic Resonance, 2013, 44, 1081-1094.	1.2	6
98	Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochimica Acta, 2013, 93, 236-240.	5.2	47
99	Analysis of water in Loy Yang brown coal using solid-state 1H NMR. Journal of Industrial and Engineering Chemistry, 2013, 19, 1673-1679.	5.8	21
100	Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Processing Technology, 2013, 109, 172-178.	7.2	58
101	Temperature effect on the sorption of borate by a layered double hydroxide prepared using dolomite as a magnesium source. Chemical Engineering Journal, 2013, 225, 664-672.	12.7	26
102	Toward an effective adsorbent for polar pollutants: Formaldehyde adsorption by activated carbon. Journal of Hazardous Materials, 2013, 260, 82-88.	12.4	109
103	Fluidized bed drying of Loy Yang brown coal with variation of temperature, relative humidity, fluidization velocity and formulation of its drying rate. Fuel, 2013, 105, 415-424.	6.4	43
104	Mild hydrocracking of 1-methyl naphthalene (1-MN) over alumina modified zeolite. Journal of Industrial and Engineering Chemistry, 2013, 19, 627-632.	5.8	33
105	Catalytic Steam Gasification of Waste Palm Tree Trunk Derived Bio-Char. Applied Mechanics and Materials, 2013, 315, 252-259.	0.2	O
106	Characteristic Sorption of H ₃ /B(OH) ₄ ^{−< on Magnesium Oxide. Materials Transactions, 2013, 54, 1809-1817.}	;/sap>	32
107	Preparation of Novel Isotropic Pitch with High Softening Point and Solvent Solubility for Pitch-based Electrospun Carbon Nanofiber. Current Organic Chemistry, 2013, 17, 1463-1468.	1.6	37
108	Low Temperature Catalytic Steam Gasification of Waste Palm Trunk by Pottasium Carbonate Supported on Perovskite Oxide. Advanced Materials Research, 2012, 626, 551-558.	0.3	0

#	Article	IF	CITATIONS
109	Synthesis of silicon monoxide–pyrolytic carbon–carbon nanofiber composites and their hybridization with natural graphite as a means of improving the anodic performance of lithium-ion batteries. Nanotechnology, 2012, 23, 355601.	2.6	4
110	Structure and electrochemical applications of boron-doped graphitized carbon nanofibers. Nanotechnology, 2012, 23, 315602.	2.6	7
111	Correlation between Fluidity Properties and Local Structures of Three Typical Asian Coal Ashes. Energy & Energy	5.1	31
112	High magnetic field solidâ€state NMR analyses by combining MAS, MQâ€MAS, homoâ€nuclear and heteroâ€nuclear correlation experiments. Magnetic Resonance in Chemistry, 2012, 50, 289-294.	1.9	4
113	Study on structural and compositional transitions of coal ash by using NMR. Science in China Series A: Mathematics, 2012, 18, 80-87.	0.2	5
114	Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catalysis Today, 2012, 185, 278-283.	4.4	39
115	Catalytic activity and activation mechanism of potassium carbonate supported on perovskite oxide for coal char combustion. Fuel, 2012, 94, 516-522.	6.4	44
116	Solid electrolyte interphase formation behavior on well-defined carbon surfaces for Li-ion battery systems. Electrochimica Acta, 2012, 77, 111-120.	5.2	5
117	Structural features of polyacrylonitrile-based carbon fibers. Journal of Materials Science, 2012, 47, 919-928.	3.7	54
118	Estimation of Mass Transfer Rate of Oxidant to Coal Char Particle Surface with Partial Oxidation Reaction in O ₂ /CO ₂ System. Kagaku Kogaku Ronbunshu, 2012, 38, 384-390.	0.3	1
119	Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chemical Communications, 2011, 47, 9429.	4.1	34
120	Meso-channel Development in Graphitic Carbon Nanofibers with Various Structures. Chemistry of Materials, 2011, 23, 4141-4148.	6.7	14
121	Graphitization behaviour of chemically derived graphene sheets. Nanoscale, 2011, 3, 3652.	5.6	39
122	Fabrication of Uniform Graphene Discs <i>via</i> Transversal Cutting of Carbon Nanofibers. ACS Nano, 2011, 5, 6254-6261.	14.6	24
123	Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology, 2011, 22, 265106.	2.6	51
124	Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature. Applied Catalysis B: Environmental, 2011, 110, 273-278.	20.2	37
125	Openâ€Ended, Nâ€Doped Carbon Nanotube–Graphene Hybrid Nanostructures as Highâ€Performance Catalyst Support. Advanced Functional Materials, 2011, 21, 999-1006.	14.9	358
126	Characteristics on HDS over amorphous silica–alumina in single and dual catalytic bed system for gas oil. Catalysis Today, 2011, 164, 100-106.	4.4	9

#	Article	IF	Citations
127	Electrochemical surface oxidation of carbon nanofibers. Carbon, 2011, 49, 96-105.	10.3	72
128	Hydro-conversion of 1-methyl naphthalene into (alkyl)benzenes over alumina-coated USY zeolite-supported NiMoS catalysts. Fuel, 2011, 90, 182-189.	6.4	47
129	Catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs) over SBA-15 supported metal catalysts. Journal of Industrial and Engineering Chemistry, 2011, 17, 271-276.	5.8	18
130	Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon, 2010, 48, 4248-4255.	10.3	211
131	Structural Units and Their Periodicity in Carbon Nanotubes. Small, 2010, 6, 2526-2529.	10.0	4
132	Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir, 2010, 26, 16096-16102.	3.5	665
133	Platinum catalysts supported on hydrothermally stable mesoporous aluminosilicate for the catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs). Catalysis Communications, 2010, 11, 1068-1071.	3.3	9
134	Preparation of a carbon nanofiber/natural graphite composite and an evaluation of its electrochemical properties as an anode material for a Li-ion battery. New Carbon Materials, 2010, 25, 89-96.	6.1	14
135	Highly Efficient Field Emission from Carbon Nanotubeâ^'Nanohorn Hybrids Prepared by Chemical Vapor Deposition. ACS Nano, 2010, 4, 7337-7343.	14.6	38
136	The preparation of a novel Si–CNF composite as an effective anodic material for lithium–ion batteries. Carbon, 2009, 47, 3383-3391.	10.3	56
137	Hidden Caves in an Aggregate of Single-Wall Carbon Nanohorns Found by Using Gd ₂ O ₃ Probes. Journal of Physical Chemistry C, 2009, 113, 2741-2744.	3.1	24
138	Biodistribution and Ultrastructural Localization of Single-Walled Carbon Nanohorns Determined In Vivo with Embedded Gd2O3 Labels. ACS Nano, 2009, 3, 1399-1406.	14.6	79
139	Pore Structure Analysis of Activated Carbon Fiber by Microdomain-Based Model. Langmuir, 2009, 25, 7631-7637.	3.5	72
140	Effect of hole size on the incorporation of C60 molecules inside single-wall carbon nanohorns and their release. Carbon, 2008, 46, 1792-1794.	10.3	78
141	Toxicity of Single-Walled Carbon Nanohorns. ACS Nano, 2008, 2, 213-226.	14.6	223
142	Adsorption Phenomena of Tetracyano- $\langle i \rangle p \langle j \rangle$ -quinodimethane on Single-Wall Carbon Nanohorns. Journal of Physical Chemistry C, 2008, 112, 5416-5422.	3.1	14
143	Closeâ^'Openâ^'Close Evolution of Holes at the Tips of Conical Graphenes of Single-Wall Carbon Nanohorns. Journal of Physical Chemistry C, 2008, 112, 8600-8603.	3.1	16
144	Organic-Vapor-Induced Repeatable Entrance and Exit of C60into/from Single-Wall Carbon Nanohorns at Room Temperature. Journal of Physical Chemistry C, 2007, 111, 9719-9722.	3.1	6

#	Article	IF	Citations
145	Evidence of Thermal Closing of Atomic-Vacancy Holes in Single-Wall Carbon Nanohorns. Journal of Physical Chemistry C, 2007, 111, 1553-1555.	3.1	30
146	Light-Assisted Oxidation of Single-Wall Carbon Nanohorns for Abundant Creation of Oxygenated Groups That Enable Chemical Modifications with Proteins To Enhance Biocompatibility. ACS Nano, 2007, 1, 265-272.	14.6	107
147	Plugging and Unplugging Holes of Single-Wall Carbon Nanohorns. Journal of Physical Chemistry C, 2007, 111, 7348-7351.	3.1	16
148	Synthesis of Ultrafine Gd2O3Nanoparticles Inside Single-Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2006, 110, 5179-5181.	2.6	73
149	Control of Hole Opening in Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns Using Oxygen. Journal of Physical Chemistry B, 2006, 110, 1587-1591.	2.6	121
150	Effect of Functional Groups at Hole Edges on Cisplatin Release from Inside Single-Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2006, 110, 5773-5778.	2.6	79
151	High-density of methane confined in internal nanospace of single-wall carbon nanohorns. Carbon, 2005, 43, 2826-2830.	10.3	29
152	Opening Mechanism of Internal Nanoporosity of Single-Wall Carbon Nanohorn. Journal of Physical Chemistry B, 2005, 109, 14319-14324.	2.6	130
153	Studies on the Adsorption of Organic Materials Inside Thick Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 8909-8913.	2.6	37
154	Controlling the Incorporation and Release of C60 in Nanometer-Scale Hollow Spaces inside Single-Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2005, 109, 17861-17867.	2.6	36
155	Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8527-8530.	7.1	106
156	On the adsorption affinity coefficient of carbon dioxide in microporous carbons. Carbon, 2004, 42, 1867-1871.	10.3	14
157	Solvent Effects on Hole-Edge Structure for Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2004, 108, 10732-10735.	2.6	36
158	Drug-Loaded Carbon Nanohorns:Â Adsorption and Release of Dexamethasone in Vitro. Molecular Pharmaceutics, 2004, 1, 399-405.	4.6	328
159	Adsorption Properties of Templated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical MethaneExperiment and GCMC Simulation. Journal of Physical Chemistry B, 2002, 106, 6523-6528.	2.6	107
160	A simple determination method of the absolute adsorbed amount for high pressure gas adsorption. Carbon, 2002, 40, 425-428.	10.3	57
161	Catalytic Combustion of Waste Palm Trunk Derived Biochar and Biomass. Applied Mechanics and Materials, 0, 315, 1007-1011.	0.2	0