Z K Wszolek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232839/publications.pdf

Version: 2024-02-01

317 24,382 68 143 papers citations h-index g-index

328 328 328 328 22325

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 2011, 72, 245-256.	8.1	4,176
2	Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron, 2004, 44, 601-607.	8.1	2,653
3	Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations. American Journal of Human Genetics, 2005, 76, 672-680.	6.2	524
4	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	21.4	502
5	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	8.1	493
6	A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nature Genetics, 1998, 18, 262-265.	21.4	486
7	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	12.4	444
8	Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nature Genetics, 2012, 44, 200-205.	21.4	428
9	Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain, 2012, 135, 765-783.	7.6	322
10	DCTN1 mutations in Perry syndrome. Nature Genetics, 2009, 41, 163-165.	21.4	285
11	Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathologica, 2011, 122, 673-690.	7.7	277
12	When DLB, PD, and PSP masquerade as MSA. Neurology, 2015, 85, 404-412.	1.1	272
13	Lrrk2 and Lewy body disease. Annals of Neurology, 2006, 59, 388-393.	5.3	259
14	Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology, 2004, 62, 1619-1622.	1.1	251
15	PET in LRRK2 mutations: comparison to sporadic Parkinson's disease and evidence for presymptomatic compensation. Brain, 2005, 128, 2777-2785.	7.6	242
16	Ribosomal Protein s15 Phosphorylation Mediates LRRK2 Neurodegeneration in Parkinson's Disease. Cell, 2014, 157, 472-485.	28.9	239
17	Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics, 2005, 6, 171-177.	1.4	237
18	Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathologica, 2015, 130, 877-889.	7.7	235

#	Article	IF	Citations
19	Phenotypic correlations in FTDP-17. Neurobiology of Aging, 2001, 22, 89-107.	3.1	229
20	Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Annals of Neurology, 1992, 32, 312-320.	5. 3	221
21	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
22	Association of <i> GBA < /i > Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology, 2016, 73, 1217.</i>	9.0	185
23	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
24	APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nature Communications, 2020, 11, 5540.	12.8	172
25	Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. European Journal of Neurology, 2009, 16, 297-309.	3.3	170
26	Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nature Communications, 2015, 6, 7247.	12.8	170
27	APOE $\hat{l}\mu 4/\hat{l}\mu 4$ diminishes neurotrophic function of human iPSC-derived astrocytes. Human Molecular Genetics, 2017, 26, 2690-2700.	2.9	162
28	MRI characteristics and scoring in HDLS due to <i>CSF1R</i> gene mutations. Neurology, 2012, 79, 566-574.	1.1	153
29	Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease. European Journal of Human Genetics, 2006, 14, 322-331.	2.8	152
30	Ataxin-2 repeat-length variation and neurodegeneration. Human Molecular Genetics, 2011, 20, 3207-3212.	2.9	147
31	(Pathoâ€)physiological relevance of <scp>PINK</scp> 1â€dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16, 1114-1130.	4.5	147
32	Autosomal dominant Parkinson's disease caused by SNCA duplications. Parkinsonism and Related Disorders, 2016, 22, S1-S6.	2.2	144
33	Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism and Related Disorders, 2014, 20, 957-964.	2.2	140
34	<i>CSF1R</i> mutations link POLD and HDLS as a single disease entity. Neurology, 2013, 80, 1033-1040.	1.1	136
35	The Neuropathology of a Chromosome 17-Linked Autosomal Dominant Parkinsonism and Dementia ("Pallido-Ponto-Nigral Degenerationâ€). Journal of Neuropathology and Experimental Neurology, 1998, 57, 588-601.	1.7	133
36	Leucine-Rich Repeat Kinase 2 Gene-Associated Disease: Redefining Genotype-Phenotype Correlation. Neurodegenerative Diseases, 2010, 7, 175-179.	1.4	127

#	Article	IF	Citations
37	<i>CSF1R</i> -related leukoencephalopathy. Neurology, 2018, 91, 1092-1104.	1.1	126
38	<i>APOE</i> Îμ4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology, 2018, 91, e1182-e1195.	1.1	122
39	Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology, 2003, 60, 1766-1769.	1.1	120
40	Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr disease). Neurology, 2004, 63, 2165-2167.	1.1	119
41	Parkinsonian features in hereditary diffuse leukoencephalopathy with spheroids (HDLS) and CSF1R mutations. Parkinsonism and Related Disorders, 2013, 19, 869-877.	2.2	119
42	Western Nebraska Family (Family D) with Autosomal Dominant Parkinsonism. Neurology, 1995, 45, 502-505.	1.1	116
43	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain, 2017, 140, 98-117.	7.6	116
44	LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics, 2010, 11, 401-408.	1.4	114
45	Clinical and genetic characterization of adultâ€onset leukoencephalopathy with axonal spheroids and pigmented glia associated with <i><scp>CSF</scp>1R</i> mutation. European Journal of Neurology, 2017, 24, 37-45.	3.3	114
46	SCA-2 presenting as parkinsonism in an Alberta family. Neurology, 2002, 59, 1625-1627.	1.1	113
47	Progression of dopaminergic dysfunction in a <i>LRRK2</i> kindred. Neurology, 2008, 71, 1790-1795.	1.1	112
48	Elucidating the genetics and pathology of Perry syndrome. Journal of the Neurological Sciences, 2010, 289, 149-154.	0.6	112
49	Diagnosis and Treatment of Common Forms of Tremor. Seminars in Neurology, 2011, 31, 065-077.	1.4	111
50	Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Human Molecular Genetics, 2017, 26, 4861-4872.	2.9	100
51	APOE $\hat{l}\mu 2$ is associated with increased tau pathology in primary tauopathy. Nature Communications, 2018, 9, 4388.	12.8	100
52	Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Orphanet Journal of Rare Diseases, 2006, 1, 30.	2.7	99
53	Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD). Neurology, 2009, 72, 1953-1959.	1.1	98
54	Familial parkinsonism: Study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism and Related Disorders, 2009, 15, 300-306.	2.2	98

#	Article	IF	CITATIONS
55	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
56	Miro1 Marks Parkinson's Disease Subset and Miro1 Reducer Rescues Neuron Loss in Parkinson's Models. Cell Metabolism, 2019, 30, 1131-1140.e7.	16.2	96
57	Profile of cognitive impairment and underlying pathology in multiple system atrophy. Movement Disorders, 2017, 32, 405-413.	3.9	95
58	Clinical Features of Parkinson Disease Patients With Homozygous Leucine-Rich Repeat Kinase 2 G2019S Mutations. Archives of Neurology, 2006, 63, 1250.	4.5	91
59	Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson's disease. Acta Neuropathologica, 2008, 116, 25-35.	7.7	91
60	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
61	Reduced expression of the G209A ?-synuclein allele in familial parkinsonism. Annals of Neurology, 1999, 46, 374-381.	5.3	89
62	Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism and Related Disorders, 2009, 15, 281-286.	2.2	89
63	PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions. Molecular Cell, 2018, 69, 744-756.e6.	9.7	88
64	Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy, 2018, 14, 1404-1418.	9.1	87
65	A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathologica, 2019, 138, 237-250.	7.7	87
66	Hereditary diffuse leukoencephalopathy with spheroids: clinical, pathologic and genetic studies of a new kindred. Acta Neuropathologica, 2006, 111, 300-311.	7.7	84
67	Update on novel familial forms of Parkinson's disease and multiple system atrophy. Parkinsonism and Related Disorders, 2014, 20, S29-S34.	2.2	84
68	Genome-wide association study in essential tremor identifies three new loci. Brain, 2016, 139, 3163-3169.	7.6	78
69	ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Molecular Neurodegeneration, 2018, 13, 53.	10.8	75
70	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74
71	Heredofamilial Brain Calcinosis Syndrome. Mayo Clinic Proceedings, 2005, 80, 641-651.	3.0	73
72	Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): A misdiagnosed disease entity. Journal of the Neurological Sciences, 2012, 314, 130-137.	0.6	73

#	Article	IF	Citations
73	Anorectal function in fluctuating (onâ€off) Parkinson's disease: Evaluation by combined anorectal manometry and electromyography. Movement Disorders, 1995, 10, 650-657.	3.9	72
74	The limbic and neocortical contribution of $\hat{l}\pm\hat{a}\in s$ ynuclein, tau, and amyloid \hat{l}^2 to disease duration in dementia with Lewy bodies. Alzheimer's and Dementia, 2018, 14, 330-339.	0.8	69
75	Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics. Orphanet Journal of Rare Diseases, 2011, 6, 33.	2.7	68
76	<i>MAPT</i> H1 haplotype is a risk factor for essential tremor and multiple system atrophy. Neurology, 2011, 76, 670-672.	1.1	68
77	German-Canadian family (family A) with parkinsonism, amyotrophy, and dementia — Longitudinal observations. Parkinsonism and Related Disorders, 1997, 3, 125-139.	2.2	67
78	In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: A PET and MRI study. Parkinsonism and Related Disorders, 2010, 16, 404-408.	2.2	67
79	Serum neurofilament light protein correlates with unfavorable clinical outcomes in hospitalized patients with COVID-19. Science Translational Medicine, 2021, 13, .	12.4	67
80	Clinical features of LRRK2 parkinsonism. Parkinsonism and Related Disorders, 2009, 15, S205-S208.	2.2	66
81	Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathologica, 2014, 127, 271-282.	7.7	66
82	Severe vascular disturbance in a case of familial brain calcinosis. Acta Neuropathologica, 2005, 109, 643-653.	7.7	64
83	Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cellular and Molecular Life Sciences, 2022, 79, 219.	5.4	64
84	Novel A18T and pA29S substitutions in \hat{l} ±-synuclein may be associated with sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 1057-1060.	2.2	63
85	The PINK1 p.1368N mutation affects protein stability and ubiquitin kinase activity. Molecular Neurodegeneration, 2017, 12, 32.	10.8	62
86	DCTN1-related neurodegeneration: Perry syndrome and beyond. Parkinsonism and Related Disorders, 2017, 41, 14-24.	2.2	62
87	Cerebellar ataxia in progressive supranuclear palsy: An autopsy study of PSP . Movement Disorders, 2016, 31, 653-662.	3.9	60
88	Characterization of <i>DCTN1</i> genetic variability in neurodegeneration. Neurology, 2009, 72, 2024-2028.	1.1	59
89	Diagnostic criteria for adultâ€onset leukoencephalopathy with axonal spheroids and pigmented glia due to <i><scp>CSF</scp>1R</i> mutation. European Journal of Neurology, 2018, 25, 142-147.	3.3	59
90	Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Molecular Neurodegeneration, 2015, 10, 46.	10.8	58

#	Article	IF	CITATIONS
91	ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer's disease. Molecular Neurodegeneration, 2014, 9, 11.	10.8	57
92	Neurodegeneration involving putative respiratory neurons in Perry syndrome. Acta Neuropathologica, 2008, 115, 263-268.	7.7	56
93	Rapidly progressive familial parkinsonism with central hypoventilation, depression and weight loss (Perry syndrome)—A literature review. Parkinsonism and Related Disorders, 2008, 14, 1-7.	2.2	56
94	SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia. Neurogenetics, 2014, 15, 23-30.	1.4	56
95	Insights into the dynamics of hereditary diffuse leukoencephalopathy with axonal spheroids. Neurology, 2008, 71, 925-929.	1.1	54
96	Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Molecular Neurodegeneration, 2018, 13, 37.	10.8	54
97	Familial parkinsonism: Our experience and review. Parkinsonism and Related Disorders, 1995, 1, 35-46.	2.2	51
98	Mitochondrial targeting sequence variants of the <i>CHCHD2</i> gene are a risk for Lewy body disorders. Neurology, 2015, 85, 2016-2025.	1.1	51
99	Plasma neurofilament light predicts mortality in patients with stroke. Science Translational Medicine, 2020, 12, .	12.4	51
100	Perry Syndrome: A Distinctive Type of TDP-43 Proteinopathy. Journal of Neuropathology and Experimental Neurology, 2017, 76, 676-682.	1.7	50
101	Diagnostic Value of Brain Calcifications in Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Clia. American Journal of Neuroradiology, 2017, 38, 77-83.	2.4	50
102	TARDBP mutations in Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 312-315.	2.2	49
103	Clinicopathologic heterogeneity in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDPâ€17) due to microtubuleâ€associated protein tau (MAPT) p.P301L mutation, including a patient with globular glial tauopathy. Neuropathology and Applied Neurobiology, 2017, 43, 200-214.	3.2	49
104	<i>PARK10</i> is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology, 2015, 84, 972-980.	1.1	48
105	<scp>S</scp> tudy of <i>LRRK2</i> variation in tauopathy: Progressive supranuclear palsy and corticobasal degeneration. Movement Disorders, 2017, 32, 115-123.	3.9	48
106	Familial parkinsonism, dementia, and lewy body disease: Study of family G. Annals of Neurology, 1997, 42, 638-643.	5.3	47
107	Clinical and genetic studies of families with the <i>tau</i> N279K mutation (FTDP-17). Neurology, 2002, 59, 1791-1793.	1.1	47
108	Clinical-pathologic study of biomarkers in FTDP-17 (PPND family with N279K tau mutation). Parkinsonism and Related Disorders, 2007, 13, 230-239.	2.2	47

#	Article	IF	CITATIONS
109	Subtypes of dementia with Lewy bodies are associated with \hat{l}_{\pm} -synuclein and tau distribution. Neurology, 2020, 95, e155-e165.	1.1	47
110	MR imaging of brainstem atrophy in progressive supranuclear palsy. Journal of Neurology, 2008, 255, 37-44.	3.6	46
111	<i>LRRK2</i> exonic variants and risk of multiple system atrophy. Neurology, 2014, 83, 2256-2261.	1.1	46
112	Hypertrophic olivary degeneration: A clinico-radiologic study. Parkinsonism and Related Disorders, 2016, 28, 36-40.	2.2	46
113	Distribution and characteristics of transactive response DNA binding protein 43 kDa pathology in progressive supranuclear palsy. Movement Disorders, 2017, 32, 246-255.	3.9	46
114	Cognitive impairment in progressive supranuclear palsy is associated with tau burden. Movement Disorders, 2017, 32, 1772-1779.	3.9	46
115	Atypical parkinsonian syndromes: a general neurologist's perspective. European Journal of Neurology, 2018, 25, 41-58.	3.3	46
116	Genetic Screening and Functional Characterization of <i>PDGFRB </i> Mutations Associated with Basal Ganglia Calcification of Unknown Etiology. Human Mutation, 2014, 35, 964-971.	2.5	45
117	Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Human Molecular Genetics, 2016, 25, 3849-3862.	2.9	44
118	Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Human Molecular Genetics, 2014, 23, 3157-3165.	2.9	42
119	Three sib-pairs of autopsy-confirmed progressive supranuclear palsy. Parkinsonism and Related Disorders, 2015, 21, 101-105.	2.2	42
120	Comparison of clinical features among Parkinson's disease subtypes: A large retrospective study in a single center. Journal of the Neurological Sciences, 2018, 386, 39-45.	0.6	42
121	Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy. Acta Neuropathologica Communications, 2020, 8, 72.	5.2	42
122	Early-onset Parkinson's disease due to PINK1 p.Q456X mutation – Clinical and functional study. Parkinsonism and Related Disorders, 2014, 20, 1274-1278.	2.2	41
123	Cancer in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 31, 28-33.	2.2	41
124	Seizures after orthotopic liver transplantation. Seizure: the Journal of the British Epilepsy Association, 1997, 6, 31-39.	2.0	40
125	Autosomal dominant dystonia-plus with cerebral calcifications. Neurology, 2006, 67, 620-625.	1.1	40
126	Establishing diagnostic criteria for Perry syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 482-487.	1.9	40

#	Article	IF	CITATIONS
127	Clinical Features and Disease Haplotypes of Individuals With the N279K tau Gene Mutation. Archives of Neurology, 2002, 59, 943.	4.5	39
128	Autosomal dominant Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, S7-S10.	2.2	39
129	Association of <i>MAPT</i> Subhaplotypes With Risk of Progressive Supranuclear Palsy and Severity of Tau Pathology. JAMA Neurology, 2019, 76, 710.	9.0	39
130	Familial idiopathic basal ganglia calcification: a challenging clinical–pathological correlation. Journal of Neurology, 2009, 256, 839-842.	3.6	38
131	Atypical Motor and Behavioral Presentations of Alzheimer Disease. Neurologist, 2012, 18, 266-272.	0.7	37
132	Analysis of the C9orf72 repeat in Parkinson's disease, essential tremor and restless legs syndrome. Parkinsonism and Related Disorders, 2013, 19, 198-201.	2.2	37
133	Diffuse Lewy body disease manifesting as corticobasal syndrome. Neurology, 2018, 91, e268-e279.	1.1	37
134	<i>APOE3</i> -Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Science Translational Medicine, 2021, 13, eabc9375.	12.4	37
135	Epileptiform electroencephalographic abnormalities in liver transplant recipients. Annals of Neurology, 1991, 30, 37-41.	5.3	34
136	Magnetic Resonance Imaging and Deep Brain Stimulation. Neurosurgery, 2002, 51, 1423-1431.	1.1	34
137	Clinicopathologic subtype of Alzheimer's disease presenting as corticobasal syndrome. Alzheimer's and Dementia, 2019, 15, 1218-1228.	0.8	34
138	Microglial replacement therapy: a potential therapeutic strategy for incurable CSF1R-related leukoencephalopathy. Acta Neuropathologica Communications, 2020, 8, 217.	5.2	33
139	Japanese family with parkinsonism, depression, weight loss, and central hypoventilation. Neurology, 2002, 58, 1025-1030.	1.1	32
140	<i>MAPT</i> haplotype H1G is associated with increased risk of dementia with Lewy bodies. Alzheimer's and Dementia, 2016, 12, 1297-1304.	0.8	32
141	Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3. Science Translational Medicine, 2020, 12, .	12.4	32
142	The Effect of tau genotype on clinical features in FTDP-17. Parkinsonism and Related Disorders, 2005, 11, 205-208.	2,2	31
143	Similarities between familial and sporadic autopsy-proven progressive supranuclear palsy. Neurology, 2013, 80, 2076-2078.	1.1	31
144	Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies. Neurology, 2015, 85, 1680-1686.	1.1	31

#	Article	IF	Citations
145	Genetics of Parkinson disease and essential tremor. Current Opinion in Neurology, 2010, 23, 388-393.	3.6	31
146	Early and pre-symptomatic neuropsychological dysfunction in the PPND family with the N279K tau mutation. Parkinsonism and Related Disorders, 2003, 9, 265-270.	2.2	30
147	LRRK2 variation and dementia with Lewy bodies. Parkinsonism and Related Disorders, 2016, 31, 98-103.	2.2	30
148	Parkinson-Associated SNCA Enhancer Variants Revealed by Open Chromatin in Mouse Dopamine Neurons. American Journal of Human Genetics, 2018, 103, 874-892.	6.2	30
149	The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. Cell Reports, 2021, 34, 108843.	6.4	30
150	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
151	A family with parkinsonism, essential tremor, restless legs syndrome, and depression. Neurology, 2011, 76, 1623-1630.	1.1	29
152	Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy, 2021, 17, 2613-2628.	9.1	29
153	TREM2 R47H variant and risk of essential tremor: A cross-sectional international multicenter study. Parkinsonism and Related Disorders, 2015, 21, 306-309.	2.2	28
154	Positron emission tomography in pallido-ponto-nigral degeneration (PPND) family (frontotemporal) Tj ETQq0 0 and Related Disorders, 2001, 7, 81-88.	0 rgBT /Ov 2.2	verlock 10 Tf 5 27
155	Absence of Rapid Eye Movement Sleep Behavior Disorder in 11 Members of the Pallidopontonigral Degeneration Kindred. Archives of Neurology, 2006, 63, 268.	4.5	27
156	Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet Journal of Rare Diseases, 2013, 8, 14.	2.7	27
157	Occurrence of Crohn's disease with Parkinson's disease. Parkinsonism and Related Disorders, 2017, 37, 116-117.	2.2	26
158	VPS35 and DNAJC13 disease-causing variants in essential tremor. European Journal of Human Genetics, 2015, 23, 887-888.	2.8	25
159	Slowly progressive dementia caused by MAPT R406W mutations: longitudinal report on a new kindred and systematic review. Alzheimer's Research and Therapy, 2018, 10, 2.	6.2	25
160	Treatment of <scp><i>CSF1R</i></scp> â€Related Leukoencephalopathy: Breaking New Ground. Movement Disorders, 2021, 36, 2901-2909.	3.9	25
161	Apolipoprotein E regulates lipid metabolism and \hat{l}_{\pm} -synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathologica, 2021, 142, 807-825.	7.7	25
162	Tau and neurofilament lightâ€chain as fluid biomarkers in spinocerebellar ataxia type 3. European Journal of Neurology, 2022, 29, 2439-2452.	3.3	25

#	Article	IF	CITATIONS
163	Clinical neurophysiologic findings in patients with rapidly progressive familial parkinsonism and dementia with pallido-ponto-nigral degeneration. Electroencephalography and Clinical Neurophysiology, 1998, 107, 213-222.	0.3	24
164	ELAVL4, PARK10, and the Celts. Movement Disorders, 2007, 22, 585-587.	3.9	24
165	Clinical and Genetic Description of a Family With a High Prevalence of Autosomal Dominant Restless Legs Syndrome. Mayo Clinic Proceedings, 2009, 84, 134-138.	3.0	24
166	A rare sequence variant in intron 1 of $\langle i \rangle \langle scp \rangle THAP \langle scp \rangle 1 \langle i \rangle$ is associated with primary dystonia. Molecular Genetics & Enomic Medicine, 2014, 2, 261-272.	1.2	24
167	Three families with Perry syndrome from distinct parts of the world. Parkinsonism and Related Disorders, 2014, 20, 884-888.	2.2	24
168	Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia: Review of Clinical Manifestations as Foundations for Therapeutic Development. Frontiers in Neurology, 2021, 12, 788168.	2.4	24
169	Update on Genetics of Parkinsonism. Neurodegenerative Diseases, 2012, 10, 257-260.	1.4	23
170	MAPT haplotype diversity in multiple system atrophy. Parkinsonism and Related Disorders, 2016, 30, 40-45.	2.2	23
171	Identification and functional characterization of novel mutations including frameshift mutation in exon 4 of CSF1R in patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Journal of Neurology, 2018, 265, 2415-2424.	3.6	23
172	An adult-onset leukoencephalopathy with axonal spheroids and pigmented glia accompanied by brain calcifications. Journal of Neurology, 2013, 260, 2665-2668.	3.6	22
173	Daytime sleepiness in dementia with Lewy bodies is associated with neuronal depletion of the nucleus basalis of Meynert. Parkinsonism and Related Disorders, 2018, 50, 99-103.	2.2	22
174	Rates of lobar atrophy in asymptomatic <i>MAPT</i> mutation carriers. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 338-346.	3.7	22
175	Predominance of brain tumors in an extended Li-Fraumeni (SBLA) kindred, including a case of Sturge-Weber syndrome., 2000, 88, 433-439.		21
176	DNAJC13 p.Asn855Ser mutation screening in Parkinson's disease and pathologically confirmed Lewy body disease patients. European Journal of Neurology, 2015, 22, 1323-1325.	3.3	21
177	RAB39B gene mutations are not a common cause of Parkinson's disease or dementia with Lewy bodies. Neurobiology of Aging, 2016, 45, 107-108.	3.1	21
178	Hereditary tauopathies and parkinsonism. Advances in Neurology, 2003, 91, 153-63.	0.8	21
179	Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Reports Medicine, 2022, 3, 100607.	6.5	21
180	Lrrk2 and chronic inflammation are linked to pallido-ponto-nigral degeneration caused by the N279K tau mutation. Acta Neuropathologica, 2007, 114, 243-254.	7.7	20

#	Article	IF	CITATIONS
181	Wholeâ€exome sequencing for variant discovery in blepharospasm. Molecular Genetics & amp; Genomic Medicine, 2018, 6, 601-626.	1.2	20
182	PARK8 LRRK2 parkinsonism. Current Neurology and Neuroscience Reports, 2006, 6, 287-294.	4.2	19
183	Genetic variation of the retromer subunits VPS26A/B-VPS29 in Parkinson's disease. Neurobiology of Aging, 2014, 35, 1958.e1-1958.e2.	3.1	19
184	Rates of Brain Atrophy Across Disease Stages in Familial Frontotemporal Dementia Associated With MAPT, GRN, and C9orf72 Pathogenic Variants. JAMA Network Open, 2020, 3, e2022847.	5.9	19
185	Is Preâ€6ymptomatic Immunosuppression Protective in <scp><i>CSF1R</i></scp> <i>â€</i> Related Leukoencephalopathy?. Movement Disorders, 2021, 36, 852-856.	3.9	19
186	What can Parkinson's disease teach us about COVID-19?. Neurologia I Neurochirurgia Polska, 2020, 54, 204-206.	1.2	19
187	Diversity of pathological features other than Lewy bodies in familial Parkinson's disease due to SNCA mutations. American Journal of Neurodegenerative Disease, 2013, 2, 266-75.	0.1	19
188	Frontotemporal dementia and parkinsonism linked to chromosome 17 with the N279K tau mutation. Neuropathology, 2007, 27, 73-80.	1.2	18
189	A proteomic signature for dementia with Lewy bodies. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 270-276.	2.4	18
190	Frontal lobe ¹ H MR spectroscopy in asymptomatic and symptomatic <i>MAPT</i> mutation carriers. Neurology, 2019, 93, e758-e765.	1.1	18
191	Neuropathology of two members of a German-American kindred (Family C) with late onset parkinsonism. Acta Neuropathologica, 2002, 103, 344-350.	7.7	17
192	Clinical implications of gene discovery in Parkinson's disease and parkinsonism. Movement Disorders, 2010, 25, S15-20.	3.9	17
193	Clinical Aspects of Familial Forms of Frontotemporal Dementia Associated with Parkinsonism. Journal of Molecular Neuroscience, 2011, 45, 359-365.	2.3	17
194	Tremor in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2016, 27, 93-97.	2.2	17
195	Association of Essential Tremor With Novel Risk Loci. JAMA Neurology, 2022, 79, 185.	9.0	17
196	Physiologic assessment of autonomic dysfunction in pallidopontonigral degeneration with N279K mutation in the tau gene on chromosome 17. Autonomic Neuroscience: Basic and Clinical, 2002, 102, 71-77.	2.8	16
197	Brain acetylcholinesterase activity in FTDP-17 studied by PET. Neurology, 2006, 66, 1276-1277.	1.1	16
198	Corticobasal syndrome with Alzheimer's disease pathology. Movement Disorders, 2009, 24, 152-153.	3.9	16

#	Article	IF	Citations
199	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679.	10.2	16
200	Primary familial brain calcification in the â€~IBGC2' kindred: All linkage roads lead to <i>SLC20A2</i> Movement Disorders, 2016, 31, 1901-1904.	3.9	16
201	TREM2 p.R47H substitution is not associated with dementia with Lewy bodies. Neurology: Genetics, 2016, 2, e85.	1.9	16
202	Progressive supranuclear palsy is not associated with neurogenic orthostatic hypotension. Neurology, 2019, 93, e1339-e1347.	1.1	16
203	In vivo dopaminergic and serotonergic dysfunction in <i>DCTN1</i> gene mutation carriers. Movement Disorders, 2014, 29, 1197-1201.	3.9	15
204	SLC1A2 rs3794087 does not associate with essential tremor. Neurobiology of Aging, 2014, 35, 935.e9-935.e10.	3.1	15
205	Association of Parkinson disease age of onset with DRD2, DRD3 and GRIN2B polymorphisms. Parkinsonism and Related Disorders, 2016, 22, 102-105.	2.2	15
206	Multiple system atrophy and apolipoprotein E. Movement Disorders, 2018, 33, 647-650.	3.9	15
207	Crohn's and Parkinson's Disease-Associated LRRK2 Mutations Alter Type II Interferon Responses in Human CD14+ Blood Monocytes Ex Vivo. Journal of NeuroImmune Pharmacology, 2020, 15, 794-800.	4.1	15
208	Rapidly progressive autosomal dominant Parkinsonism and dementia with Pallido-Ponto-Nigral Gegeneration (PPND) and Disinhibition-Dementia-Parkinsonism-Amyotrophy Complex (DDPAC) are clinically distinct conditions that are both linked to 17q21-22. Parkinsonism and Related Disorders, 1997, 3, 67-76.	2.2	14
209	ARE PARKINSON DISEASE PATIENTS PROTECTED FROM SOME BUT NOT ALL CANCERS?. Neurology, 2008, 71, 1650-1651.	1.1	14
210	Agraphia in patients with frontotemporal dementia and parkinsonism linked to chromosome 17 with P301L <i>MAPT</i> mutation: dysexecutive, aphasic, apraxic or spatial phenomenon?. Neurocase, 2014, 20, 69-86.	0.6	14
211	Latin America's first case of Perry syndrome and a new treatment option for respiratory insufficiency. Journal of Neurology, 2014, 261, 620-621.	3.6	14
212	Neuropathologic basis of frontotemporal dementia in progressive supranuclear palsy. Movement Disorders, 2019, 34, 1655-1662.	3.9	14
213	Trajectory of lobar atrophy in asymptomatic and symptomatic GRN mutation carriers: a longitudinal MRI study. Neurobiology of Aging, 2020, 88, 42-50.	3.1	14
214	Neuroimaging phenotypes of <i>CSF1R</i> â€related leukoencephalopathy: Systematic review, metaâ€analysis, and imaging recommendations. Journal of Internal Medicine, 2022, 291, 269-282.	6.0	14
215	The Genetics of Frontotemporal Dementia. Neurologic Clinics, 2007, 25, 697-715.	1.8	13
216	Whole-Exome Sequencing as a Diagnostic Tool in a Family With Episodic Ataxia Type 1. Mayo Clinic Proceedings, 2015, 90, 366-371.	3.0	13

#	Article	IF	CITATIONS
217	Hereditary diffuse leukoencephalopathy with axonal spheroids. Neurology, 2014, 82, 102-103.	1.1	12
218	Spinocerebellar ataxia 15: A phenotypic review and expansion. Neurologia I Neurochirurgia Polska, 2017, 51, 86-91.	1.2	12
219	GBA variation and susceptibility to multiple system atrophy. Parkinsonism and Related Disorders, 2020, 77, 64-69.	2.2	12
220	Screening non-MAPT genes of the Chr17q21 H1 haplotype in Parkinson's disease. Parkinsonism and Related Disorders, 2020, 78, 138-144.	2.2	12
221	Clinical features of autopsy-confirmed multiple system atrophy in the Mayo Clinic Florida brain bank. Parkinsonism and Related Disorders, 2021, 89, 155-161.	2.2	12
222	Interest in genetic testing in pallido-ponto-nigral degeneration (PPND): a family with frontotemporal dementia with Parkinsonism linked to chromosome 17. European Journal of Neurology, 2001, 8, 179-183.	3.3	11
223	FTDPâ€17 with Pick bodyâ€like inclusions associated with a novel tau mutation, p.E372G. Brain Pathology, 2017, 27, 612-626.	4.1	11
224	Genetics of Parkinson's disease in the Polish population. Neurologia I Neurochirurgia Polska, 2021, 55, 241-252.	1.2	11
225	Anatomy of disturbed sleep in pallidoâ€pontoâ€nigral degeneration. Annals of Neurology, 2011, 69, 1014-1025.	5.3	10
226	Analysis of Nuclear Export Sequence Regions of FUS-Related RNA-Binding Proteins in Essential Tremor. PLoS ONE, 2014, 9, e111989.	2.5	10
227	Rare variants in <i>MC1R/TUBB3</i> exon 1 are not associated with <scp>P</scp> arkinson's disease. Annals of Neurology, 2016, 79, 331-331.	5.3	10
228	Frequency of spinocerebellar ataxia mutations in patients with multiple system atrophy. Clinical Autonomic Research, 2021, 31, 117-125.	2.5	10
229	First Polish case of CSF1R-related leukoencephalopathy. Neurologia I Neurochirurgia Polska, 2021, 55, 239-240.	1.2	10
230	Clinical, pathological and genetic characteristics of Perry diseaseâ€"new cases and literature review. European Journal of Neurology, 2021, 28, 4010-4021.	3.3	10
231	Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction. PLoS ONE, 2016, 11, e0165112.	2.5	10
232	Investigating FUS variation in Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, S147-S149.	2.2	9
233	Reduced orexin immunoreactivity in Perry syndrome and multiple system atrophy. Parkinsonism and Related Disorders, 2017, 42, 85-89.	2.2	9
234	Partial loss of function of colonyâ€stimulating factor 1 receptor in a patient with white matter abnormalities. European Journal of Neurology, 2018, 25, 875-881.	3.3	9

#	Article	IF	CITATIONS
235	Association study between multiple system atrophy and TREM2 p.R47H. Neurology: Genetics, 2018, 4, e257.	1.9	9
236	Brain MR Spectroscopy Changes Precede Frontotemporal Lobar Degeneration Phenoconversion in Mapt Mutation Carriers. Journal of Neuroimaging, 2019, 29, 624-629.	2.0	9
237	Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures. Acta Neuropathologica Communications, 2020, 8, 162.	5. 2	9
238	Clinical and pathologic features of cognitive-predominant corticobasal degeneration. Neurology, 2020, 95, e35-e45.	1.1	9
239	Urine levels of the polyglutamine ataxin-3 protein are elevated in patients with spinocerebellar ataxia type 3. Parkinsonism and Related Disorders, 2021, 89, 151-154.	2.2	9
240	Neuropathology of progressive supranuclear palsy after treatment with tilavonemab. Lancet Neurology, The, 2021, 20, 786-787.	10.2	9
241	Genetics of Parkinson's disease: a review of SNCA and LRRK2. Wiadomości Lekarskie, 2016, 69, 328-32.	0.3	9
242	Molecular genetics of familial parkinsonism. Parkinsonism and Related Disorders, 1999, 5, 145-155.	2.2	8
243	Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17): PPND family. A longitudinal videotape demonstration. Movement Disorders, 2001, 16, 756-760.	3.9	8
244	Association of <i>MAPT</i> subhaplotypes with clinical and demographic features in Parkinson's disease. Annals of Clinical and Translational Neurology, 2020, 7, 1557-1563.	3.7	8
245	Association of ABI3 and PLCG2 missense variants with disease risk and neuropathology in Lewy body disease and progressive supranuclear palsy. Acta Neuropathologica Communications, 2020, 8, 172.	5 . 2	8
246	MAPT subhaplotypes in corticobasal degeneration: assessing associations with disease risk, severity of tau pathology, and clinical features. Acta Neuropathologica Communications, 2020, 8, 218.	5.2	8
247	Neuropathological Findings of <scp>CSF1R</scp> â€Related Leukoencephalopathy After Longâ€Term Immunosuppressive Therapy. Movement Disorders, 2022, 37, 439-440.	3.9	8
248	Diaphragmatic Pacemaker for Perry Syndrome. Mayo Clinic Proceedings, 2018, 93, 263.	3.0	7
249	Cognitive and behavioral profile of Perry syndrome in two families. Parkinsonism and Related Disorders, 2020, 77, 114-120.	2.2	7
250	Fine-mapping of the non-coding variation driving the Caucasian LRRK2 GWAS signal in Parkinson's disease. Parkinsonism and Related Disorders, 2021, 83, 22-30.	2.2	7
251	Clinical and genetic description of a family with a high prevalence of autosomal dominant restless legs syndrome. Mayo Clinic Proceedings, 2009, 84, 134-8.	3.0	7
252	Complex partial status epilepticus after bone marrow transplantation for non-Hodgkin's lymphoma. Bone Marrow Transplantation, 1997, 19, 637-638.	2.4	6

#	Article	IF	Citations
253	A familial form of parkinsonism, dementia, and motor neuron disease: A longitudinal study. Parkinsonism and Related Disorders, 2014, 20, 1129-1134.	2.2	6
254	Genetic characterization of Parkinson's disease patients in Ecuador and Colombia. Parkinsonism and Related Disorders, 2020, 75, 27-29.	2.2	6
255	Spinocerebellar ataxia type 6 family with phenotypic overlap with Multiple System Atrophy. Neurologia I Neurochirurgia Polska, 2020, 54, 350-355.	1.2	6
256	Effects of sex and APOE on Parkinson's Disease-related cognitive decline. Neurologia I Neurochirurgia Polska, 2021, 55, 559-566.	1.2	6
257	Poly (ADP-Ribose) and α–synuclein extracellular vesicles in patients with Parkinson disease: A possible biomarker of disease severity. PLoS ONE, 2022, 17, e0264446.	2.5	6
258	Brainstem atrophy on routine MR study in pallidopontonigral degeneration. Journal of Neurology, 2009, 256, 827-829.	3.6	5
259	Clinical presentation of a patient with SLC20A2 and THAP1 deletions: Differential diagnosis of oromandibular dystonia. Parkinsonism and Related Disorders, 2015, 21, 329-331.	2.2	5
260	Cerebral peduncle angle: Unreliable in differentiating progressive supranuclear palsy from other neurodegenerative diseases. Parkinsonism and Related Disorders, 2016, 32, 31-35.	2.2	5
261	Anticipation in a family with primary familial brain calcification caused by an SLC20A2 variant. Neurologia I Neurochirurgia Polska, 2018, 52, 386-389.	1.2	5
262	TRIO gene segregation in a family with cerebellar ataxia. Neurologia I Neurochirurgia Polska, 2018, 52, 743-749.	1.2	5
263	Prevalence of GBA p.K198E mutation in Colombian and Hispanic populations. Parkinsonism and Related Disorders, 2020, 73, 16-18.	2.2	5
264	Early-Onset Parkinson Disease Screening in Patients From Nigeria. Frontiers in Neurology, 2020, 11, 594927.	2.4	5
265	Latent trait modeling of tau neuropathology in progressive supranuclear palsy. Acta Neuropathologica, 2021, 141, 667-680.	7.7	5
266	Frequency of mutations in PRKN, PINK1, and DJ1 in Patients With Early-Onset Parkinson Disease from neighboring countries in Central Europe. Parkinsonism and Related Disorders, 2021, 86, 48-51.	2.2	5
267	Neuropathology of <scp>McLeod</scp> Syndrome. Movement Disorders, 2022, 37, 644-646.	3.9	5
268	Olfactory dysfunction in Parkinson's disease. Clinical Neuroscience, 1998, 5, 94-101.	0.1	5
269	Familial Parkinson's disease and related conditions. Clinical genetics. Advances in Neurology, 2001, 86, 33-43.	0.8	5
270	Plasma PolyQ-ATXN3 Levels Associate With Cerebellar Degeneration and Behavioral Abnormalities in a New AAV-Based SCA3 Mouse Model. Frontiers in Cell and Developmental Biology, 2022, 10, 863089.	3.7	5

#	Article	IF	CITATIONS
271	L-Dopa response, choreic dyskinesia, and dystonia in Perry syndrome. Parkinsonism and Related Disorders, 2022, 100, 19-23.	2.2	5
272	Cathepsin B p.Gly284Val Variant in Parkinson's Disease Pathogenesis. International Journal of Molecular Sciences, 2022, 23, 7086.	4.1	5
273	Brain calcification in a <i>CSF1R</i> mutation carrier precedes white matter degeneration. Movement Disorders, 2017, 32, 1493-1495.	3.9	4
274	Association of mitochondrial genomic background with risk of Multiple System Atrophy. Parkinsonism and Related Disorders, 2020, 81, 200-204.	2.2	4
275	Screening of <scp><i>GBA</i></scp> Mutations in Nigerian Patients with Parkinson's Disease. Movement Disorders, 2021, 36, 2971-2973.	3.9	4
276	A novel de novo pathogenic mutation in the CACNA1 Agene. Movement Disorders, 2012, 27, 1578-1579.	3.9	3
277	<i>DCTN1</i> Mutations and Progressive Supranuclear Palsy–Like Phenotype. JAMA Neurology, 2014, 71, 655.	9.0	3
278	DCTN1 variation in pathologically-confirmed PSP and CBD tauopathy. Parkinsonism and Related Disorders, 2017, 44, 151-153.	2.2	3
279	New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology, 2006, 66, 781-781.	1.1	2
280	Prevalence and clinical characteristics of restless legs syndrome in Japanese patients with Parkinson's disease. Movement Disorders, 2007, 22, 284-284.	3.9	2
281	Reply: Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain, 2017, 140, e33-e33.	7.6	2
282	A patient clinically diagnosed as multiple system atrophy harboring LRRK2 p.G2019S. Clinical Parkinsonism & Related Disorders, 2019, 1, 100-101.	0.9	2
283	Investigating ELOVL7 coding variants in multiple system atrophy. Neuroscience Letters, 2021, 749, 135723.	2.1	2
284	Response to "Does amantadine have a protective effect against COVID-19?― Neurologia I Neurochirurgia Polska, 2020, 54, 286-287.	1.2	2
285	Capgras syndrome in dementia with Lewy bodies: a possible association of severe cortical Lewy body pathology. Neurologia I Neurochirurgia Polska, 2021, , .	1.2	2
286	Genetic considerations in movement disorders. Current Opinion in Neurology and Neurosurgery, 1992, 5, 324-30.	0.4	2
287	Perry syndrome: a case of atypical parkinsonism with confirmed DCTN1 mutation: a response. New Zealand Medical Journal, 2020, 133, 84-85.	0.5	2
288	Novel radiology method for investigating middle ear myoclonus. Clinical Anatomy, 2016, 29, 811-812.	2.7	1

#	Article	IF	CITATIONS
289	Deep brain stimulation for levodopa-refractory benign tremulous parkinsonism. Neurologia I Neurochirurgia Polska, 2016, 50, 383-386.	1.2	1
290	No evidence for DNM3 as genetic modifier of age at onset in idiopathic Parkinson's disease. Neurobiology of Aging, 2019, 74, 236.e1-236.e5.	3.1	1
291	Comment on: "The Geographic Diversity of Spinocerebellar Ataxias (SCAs) in the Americas: A Systematic Review― Movement Disorders Clinical Practice, 2020, 7, 237-238.	1.5	1
292	Association of Mitochondrial DNA Genomic Variation With Risk of Pick Disease. Neurology, 2021, 96, e1755-e1760.	1.1	1
293	Reply to: "Investigation of Disease Modifying Mechanisms in <scp><i>CSF1R</i>â€Related</scp> Leukoencephalopathy― Movement Disorders, 2021, 36, 1471-1471.	3.9	1
294	A practical approach to adult-onset white matter diseases, with illustrative cases. Neurologia I Neurochirurgia Polska, 2020, 54, 312-322.	1.2	1
295	LRRK2 R1441C mutation causing Parkinson's Disease in an Egyptian family. Neurologia I Neurochirurgia Polska, 2022, , .	1.2	1
296	Reply to "Prophylactic Allogeneic Hematopoietic Stem Cell Therapy for <scp><i>CSF1R</i></scp> â€Related Leukoencephalopathy― Movement Disorders, 2022, 37, 1109-1110.	3.9	1
297	Letters to the editor. Muscle and Nerve, 1996, 19, 109-114.	2.2	0
298	Frontotemporal Dementia. Blue Books of Neurology, 2010, 34, 397-416.	0.1	0
299	Letter to the Readership of the Polish Journal of Neurology and Neurosurgery. Neurologia I Neurochirurgia Polska, 2018, 52, 123.	1.2	0
300	The PINK1 p.1368N Mutation Affects Protein Stability and Kinase Activity with Its Structural Change. Juntendo Medical Journal, 2018, 64, 17-30.	0.1	0
301	Letter to the editor, "Movement disorders rounds: A case of missing pathology in a patient with LRRK2 Parkinson's disease― Parkinsonism and Related Disorders, 2020, 79, 130.	2.2	0
302	Message from the Editors of the Polish Journal of Neurology and Neurosurgery to the Authors of our Invited Editorials and Invited Reviews, and to our Reviewers. Neurologia I Neurochirurgia Polska, 2021, 55, 1-4.	1.2	0
303	Editors of the Polish Journal of Neurology and Neurosurgery announce the first issue featuring a Leading Topic. Neurologia I Neurochirurgia Polska, 2021, 55, 119-119.	1.2	0
304	Editorial Board meeting of the Polish Journal of Neurology and Neurosurgery â€" announcement of the gold open access for the journal. Neurologia I Neurochirurgia Polska, 2021, 55, 237-238.	1.2	0
305	Latest bibliometric factors for the Polish Journal of Neurology and Neurosurgery. Neurologia I Neurochirurgia Polska, 2021, 55, 329-330.	1.2	0
306	Exonic Re-Sequencing of the Chromosome 2q24.3 Parkinson's Disease Locus. PLoS ONE, 2015, 10, e0128586.	2.5	0

#	Article	IF	CITATIONS
307	How to write a scientific paper? Lessons from a distinguished scientist and editor. European Journal of Translational and Clinical Medicine, 2020, 3, 74-78.	0.1	О
308	The editors of Neurologia i Neurochirurgia Polska (the Polish Journal of Neurology and) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf	50 702 Td (Ne
309	Further Increase of Impact Factor and CiteScoreâ,,¢ of the Polish Journal of Neurology and Neurosurgery (Neurologia i Neurochirurgia Polska). Neurologia I Neurochirurgia Polska, 2020, 54, 289-290.	1.2	O
310	Polish Journal of Neurology and Neurosurgery (Neurologia i Neurochirurgia Polska) — update on publication status. Neurologia I Neurochirurgia Polska, 2020, 54, 483-485.	1.2	0
311	Polish Journal of Neurology and Neurosurgery (Neurologia i Neurochirurgia Polska) — a publication of increasing national and international stature. Neurologia I Neurochirurgia Polska, 2020, 54, 1-2.	1.2	O
312	Professor JarosÅ,aw SÅ,awek elected Secretary of the International Association of Parkinsonism and Related Disorders. Neurologia I Neurochirurgia Polska, 2021, 55, 415-415.	1.2	0
313	Bioethics and informatics in medical studies during coronavirus disease 2019. Polish Archives of Internal Medicine, 2020, 130, 719.	0.4	O
314	Rare and unusual parkinsonian syndromes. Advances in Neurology, 1999, 80, 369-76.	0.8	0
315	Editor's Thank You to Our Authors and Reviewers. Neurologia I Neurochirurgia Polska, 2022, 56, 115-117.	1.2	O
316	Comment on: <scp>Polyglutamineâ€Expanded</scp> Ataxinâ€3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood. Movement Disorders, 2022, 37, 1120-1121.	3.9	0
317	Sensitivity of the Social Behavior Observer Checklist to Early Symptoms of Patients With Frontotemporal Dementia. Neurology, 2022, , 10.1212/WNL.0000000000200582.	1.1	O