Christine Vogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328084/publications.pdf

Version: 2024-02-01

39 4,318 16
papers citations h-index

56 56 10507 all docs docs citations times ranked citing authors

37

g-index

#	Article	IF	Citations
1	Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 2012, 13, 227-232.	16.3	3,228
2	K63 polyubiquitination is a new modulator of the oxidative stress response. Nature Structural and Molecular Biology, 2015, 22, 116-123.	8.2	162
3	Differential dynamics of the mammalian <scp>mRNA</scp> and protein expression response to misfolding stress. Molecular Systems Biology, 2016, 12, 855.	7.2	154
4	Protein Expression Regulation under Oxidative Stress. Molecular and Cellular Proteomics, 2011, 10, M111.009217.	3.8	113
5	iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. Npj Systems Biology and Applications, 2019, 5, 22.	3.0	79
6	High-throughput analyses of hnRNP H1 dissects its multi-functional aspect. RNA Biology, 2016, 13, 400-411.	3.1	50
7	BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology, 2016, 100, 76-89.	4.1	47
8	New insights into the cellular temporal response to proteostatic stress. ELife, 2018, 7, .	6.0	47
9	Exploiting Interdata Relationships in Next-generation Proteomics Analysis. Molecular and Cellular Proteomics, 2019, 18, S5-S14.	3.8	39
10	Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. ELife, 2019, 8, .	6.0	30
11	Quantifying gene expression: the importance of being subtle. Molecular Systems Biology, 2016, 12, 885.	7.2	29
12	Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms. Journal of Bacteriology, 2018, 200, .	2.2	29
13	Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. Journal of Proteome Research, 2019, 18, 309-318.	3.7	29
14	Label-Free Protein Quantitation Using Weighted Spectral Counting. Methods in Molecular Biology, 2012, 893, 321-341.	0.9	26
15	Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules, 2015, 5, 1441-1466.	4.0	26
16	Condition-Specific Modeling of Biophysical Parameters Advances Inference of Regulatory Networks. Cell Reports, 2018, 23, 376-388.	6.4	23
17	Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins <i>In Vivo</i> . Antioxidants and Redox Signaling, 2019, 31, 1133-1149.	5. 4	22
18	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	7.1	21

#	Article	IF	Citations
19	Nucleobindins and encoded peptides: From cell signaling to physiology. Advances in Protein Chemistry and Structural Biology, 2019, 116, 91-133.	2.3	19
20	Translation's coming of age. Molecular Systems Biology, 2011, 7, 498.	7.2	17
21	Protein Expression Under Pressure. Science, 2013, 342, 1052-1053.	12.6	16
22	PTMscape: an open source tool to predict generic post-translational modifications and map modification crosstalk in protein domains and biological processes. Molecular Omics, 2018, 14, 197-209.	2.8	12
23	Prevaccination Glycan Markers of Response to an Influenza Vaccine Implicate the Complement Pathway. Journal of Proteome Research, 2022, 21, 1974-1985.	3.7	12
24	Evaluation of determinants of the serological response to the quadrivalent splitâ€inactivated influenza vaccine. Molecular Systems Biology, 2022, 18, e10724.	7.2	11
25	PECAplus: statistical analysis of time-dependent regulatory changes in dynamic single-omics and dual-omics experiments. Npj Systems Biology and Applications, 2018, 4, 3.	3.0	10
26	New Proteomic Signatures to Distinguish Between Zika and Dengue Infections. Molecular and Cellular Proteomics, 2021, 20, 100052.	3.8	10
27	New horizons in the stormy sea of multimodal single-cell data integration. Molecular Cell, 2022, 82, 248-259.	9.7	9
28	Mass spectrometry analysis of K63-ubiquitinated targets in response to oxidative stress. Data in Brief, 2015, 4, 130-134.	1.0	8
29	Simple Method to Quantify Protein Abundances from 1000 Cells. ACS Omega, 2020, 5, 15537-15546.	3.5	6
30	Time-course proteomics dataset monitoring HeLa cells subjected to DTT induced endoplasmic reticulum stress. Data in Brief, 2016, 8, 1168-1172.	1.0	5
31	Integration of large-scale multi-omic datasets: A protein-centric view. Current Opinion in Systems Biology, 2018, 11, 74-81.	2.6	5
32	EBprotV2: A Perseus Plugin for Differential Protein Abundance Analysis of Labeling-Based Quantitative Proteomics Data. Journal of Proteome Research, 2019, 18, 748-752.	3.7	5
33	"Structuromics― another step toward a holistic view of the cell. Cell, 2021, 184, 301-303.	28.9	5
34	Quantifying protein (dis)order. Science, 2017, 355, 794-795.	12.6	3
35	Linking Marine Ecosystem Services to the North Sea's Energy Fields in Transnational Marine Spatial Planning. Environments - MDPI, 2018, 5, 67.	3.3	3
36	A proteinâ€centric approach for exome variant aggregation enables sensitive association analysis with clinical outcomes. Human Mutation, 2020, 41, 934-945.	2.5	3

#	Article	IF	CITATIONS
37	Systems Approaches to the Eukaryotic Stress Response. PLoS Computational Biology, 2016, 12, e1004757.	3.2	1
38	Integrated multi-omics analysis of RB-loss identifies widespread cellular programming and synthetic weaknesses. Communications Biology, 2021, 4, 977.	4.4	1
39	Deciphering the effect of Endoplasmic Reticulum (ER) stress on nearâ€mitochondrial localized translation. FASEB Journal, 2018, 32, 543.19.	0.5	O