Stephen L Dobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/232704/publications.pdf

Version: 2024-02-01

77 papers

6,047 citations

35 h-index

109321

76900 74 g-index

78 all docs

78 docs citations

78 times ranked 4739 citing authors

#	Article	IF	CITATIONS
1	The Effects of Boric Acid Sugar Bait on Wolbachia Trans-Infected Male Aedes albopictus (ZAP Males \hat{A}^{\otimes}) in Laboratory Conditions. Insects, 2022, 13, 1.	2.2	2
2	Reply to: Assessing the efficiency of Verily's automated process for production and release of male Wolbachia-infected mosquitoes. Nature Biotechnology, 2022, 40, 1443-1446.	17.5	2
3	When More is Less: Mosquito Population Suppression Using Sterile, Incompatible and Genetically Modified Male Mosquitoes. Journal of Medical Entomology, 2021, 58, 1980-1986.	1.8	13
4	Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nature Biotechnology, 2020, 38, 482-492.	17.5	225
5	Aedes aegypti Males as Vehicles for Insecticide Delivery. Insects, 2019, 10, 230.	2.2	15
6	Localized Control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via Inundative Releases of Wolbachia-Infected Male Mosquitoes. Journal of Medical Entomology, 2019, 56, 1296-1303.	1.8	91
7	Life-shortening Wolbachia infection reduces population growth of Aedes aegypti. Acta Tropica, 2017, 172, 232-239.	2.0	11
8	Infections of Wolbachia may destabilize mosquito population dynamics. Journal of Theoretical Biology, 2017, 428, 98-105.	1.7	8
9	A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006142.	3.0	18
10	<i>Wolbachia</i> mosquito control: Regulated. Science, 2016, 352, 526-527.	12.6	11
11	Female Adult Aedes albopictus Suppression by Wolbachia-Infected Male Mosquitoes. Scientific Reports, 2016, 6, 33846.	3.3	127
12	Interaction ofWolbachiaand Bloodmeal Type in Artificially InfectedAedes albopictus(Diptera:) Tj ETQq0 0 0 rgBT	Overlock 1.8	10 ₁₂ 50 302
13	Male Mosquitoes as Vehicles for Insecticide. PLoS Neglected Tropical Diseases, 2015, 9, e0003406.	3.0	34
14	Molecular Xenomonitoring Using Mosquitoes to Map Lymphatic Filariasis after Mass Drug Administration in American Samoa. PLoS Neglected Tropical Diseases, 2014, 8, e3087.	3.0	52
15	Interspecific Transfer of a <i>Wolbachia</i> Infection Into <i>Aedes albopictus</i> (Diptera: Culicidae) Yields a Novel Phenotype Capable of Rescuing a Superinfection. Journal of Medical Entomology, 2014, 51, 1192-1198.	1.8	0
16	Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Tropica, 2014, 132, S150-S163.	2.0	284
17	Wolbachia endosymbionts and human disease control. Molecular and Biochemical Parasitology, 2014, 195, 88-95.	1.1	104
18	Determinants of Male <i>Aedes aegypti</i> and <i>Aedes polynesiensis</i> (Diptera: Culicidae) Response to Sound: Efficacy and Considerations for Use of Sound Traps in the Field. Journal of Medical Entomology, 2013, 50, 723-730.	1.8	23

#	Article	IF	CITATIONS
19	Reduced competitiveness of Wolbachia infected Aedes aegypti larvae in intra- and inter-specific immature interactions. Journal of Invertebrate Pathology, 2013, 114, 173-177.	3.2	15
20	Landing response of <i>Aedes (Stegomyia) polynesiensis</i> mosquitoes to coloured targets. Medical and Veterinary Entomology, 2013, 27, 332-338.	1.5	9
21	Methoprene Effects on Survival and Reproductive Performance of Adult Female and Male <i>Aedes aegypti</i> i>. Journal of the American Mosquito Control Association, 2013, 29, 369-375.	0.7	10
22	Population impacts of Wolbachiaon Aedes albopictus., 2013, 23, 493-501.		12
23	<i>>Wolbachia</i> Re-Replacement Without Incompatibility: Potential for Intended and Unintended Consequences. Journal of Medical Entomology, 2013, 50, 1152-1158.	1.8	2
24	Swarming Behavior of <i>Aedes polynesiensis</i> (Diptera: Culicidae) and Characterization of Swarm Markers in American Samoa. Journal of Medical Entomology, 2013, 50, 740-747.	1.8	8
25	Infection, growth and maintenance of <i>Wolbachia pipientis </i> in clonal and non-clonal <i>Aedes albopictus </i> ivaluation of Entomological Research, 2013, 103, 251-260.	1.0	7
26	Open Release of Male Mosquitoes Infected with a Wolbachia Biopesticide: Field Performance and Infection Containment. PLoS Neglected Tropical Diseases, 2012, 6, e1797.	3.0	181
27	Reactive Oxygen Species Production and Brugia pahangi Survivorship in Aedes polynesiensis with Artificial Wolbachia Infection Types. PLoS Pathogens, 2012, 8, e1003075.	4.7	44
28	Monitoring Temporal Abundance and Spatial Distribution ofAedes polynesiensisUsing BG-Sentinel Traps in Neighboring Habitats on Raiatea, Society Archipelago, French Polynesia. Journal of Medical Entomology, 2012, 49, 51-60.	1.8	18
29	Estimation of Population Size and Dispersal of <i>Aedes polynesiensis</i> French Polynesia. Journal of Medical Entomology, 2012, 49, 971-980.	1.8	12
30	Wolbachia strain w Pip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia- based suppression strategy against the disease vector Aedes albopictus. Parasites and Vectors, 2012, 5, 254.	2.5	58
31	Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia- based autocidal strategy. Parasites and Vectors, 2012, 5, 80.	2.5	21
32	<i>Wolbachia</i> Effects on Host Fitness and the Influence of Male Aging on Cytoplasmic Incompatibility in <i>Aedes polynesiensis</i> (Diptera: Culicidae). Journal of Medical Entomology, 2011, 48, 1008-1015.	1.8	31
33	SYTO11 staining vs FISH staining: a comparison of two methods to stain Wolbachia pipientis in cell cultures. Letters in Applied Microbiology, 2011, 52, 168-176.	2.2	6
34	Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement. BMC Evolutionary Biology, 2011, 11, 290.	3.2	30
35	Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions. PLoS Neglected Tropical Diseases, 2011, 5, e1271.	3.0	58
36	Artificial Triple Wolbachia Infection in Aedes albopictus Yields a New Pattern of Unidirectional Cytoplasmic Incompatibility. Applied and Environmental Microbiology, 2010, 76, 5887-5891.	3.1	38

#	Article	IF	CITATIONS
0.7	Characterization of a NewAedes albopictus(Diptera: Culicidae)-Wolbachia pipientis(Rickettsiales:) Tj ETQq1		
37	pipiens(Diptera: Culicidae). Journal of Medical Entomology, 2010, 47, 179-187.	1.8	48
38	Characterization of a New <i>Aedes albopictus</i> (Diptera: Culicidae)– <i>Wolbachia pipientis</i> (Rickettsiales: Rickettsiaceae) Symbiotic Association Generated by Artificial Transfer of the <i>w</i> Pip Strain From <i>Culex pipiens</i> (Diptera: Culicidae). Journal of Medical Entomology, 2010, 47, 179-187.	1.8	68
39	Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. Journal of Invertebrate Pathology, 2010, 105, 341-346.	3.2	48
40	Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis. Vector-Borne and Zoonotic Diseases, 2010, 10, 295-311.	1.5	432
41	Pathogenicity of Life-Shortening <i>Wolbachia</i> in <i>Aedes albopictus</i> after Transfer from <i>Drosophila melanogaster</i> Applied and Environmental Microbiology, 2009, 75, 7783-7788.	3.1	68
42	<i>>Wolbachia</i> Infection and Resource Competition Effects on Immature <i>Aedes albopictus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2009, 46, 451-459.	1.8	29
43	Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasites and Vectors, 2009, 2, 38.	2.5	47
44	Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics, 2008, 9, 1.	2.8	622
45	Guidance for Contained Field Trials of Vector Mosquitoes Engineered to Contain a Gene Drive System: Recommendations of a Scientific Working Group. Vector-Borne and Zoonotic Diseases, 2008, 8, 127-166.	1.5	89
46	Digital Image Analysis to Estimate Numbers of Aedes Eggs Oviposited in Containers. Journal of the American Mosquito Control Association, 2008, 24, 496-501.	0.7	36
47	Interspecific Hybridization Yields Strategy for South Pacific Filariasis Vector Elimination. PLoS Neglected Tropical Diseases, 2008, 2, e129.	3.0	70
48	Disruption of the Wolbachia surface protein gene wspB by a transposable element in mosquitoes of the Culex pipiens complex (Diptera, Culicidae). Insect Molecular Biology, 2007, 16, 143-154.	2.0	17
49	Transfection ofWolbachia pipientisintoDrosophilaEmbryos. Current Protocols in Microbiology, 2007, 5, Unit 3A.4.	6.5	4
50	WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochemistry and Molecular Biology, 2006, 36, 80-85.	2.7	35
51	<i>>Wolbachia</i> Effects on <i>Aedes albopictus</i> (Diptera: Culicidae) Immature Survivorship and Development. Journal of Medical Entomology, 2006, 43, 689-695.	1.8	22
52	<i>>Wolbachia</i> Effects on <i>Aedes albopictus</i> (Diptera: Culicidae) Immature Survivorship and Development. Journal of Medical Entomology, 2006, 43, 689-695.	1.8	23
53	Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1317-1322.	2.6	76
54	No Evidence for Bacteriophage WO orf7 Correlation withWolbachia-Induced Cytoplasmic Incompatibility in theCulex pipiensComplex (Culicidae: Diptera). Journal of Medical Entomology, 2005, 42, 789-794.	1.8	11

#	Article	IF	CITATIONS
55	Wolbachia Establishment and Invasion in an Aedes aegypti Laboratory Population. Science, 2005, 310, 326-328.	12.6	456
56	No Evidence for Bacteriophage WO orf7 Correlation with <i>Wolbachia</i> -Induced Cytoplasmic Incompatibility in the <i>Culex pipiens</i> Complex (Culicidae: Diptera). Journal of Medical Entomology, 2005, 42, 789-794.	1.8	11
57	Characterization of Wolbachia Transfection Efficiency by Using Microinjection of Embryonic Cytoplasm and Embryo Homogenate. Applied and Environmental Microbiology, 2005, 71, 3199-3204.	3.1	40
58	Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochemistry and Molecular Biology, 2005, 35, 903-910.	2.7	108
59	Characterization of Wolbachia Infections and Interspecific Crosses of Aedes (Stegomyia) polynesiensis and Ae. (Stegomyia) riversi (Diptera: Culicidae). Journal of Medical Entomology, 2004, 41, 894-900.	1.8	29
60	EVOLUTION OF WOLBACHIA CYTOPLASMIC INCOMPATIBILITY TYPES. Evolution; International Journal of Organic Evolution, 2004, 58, 2156.	2.3	5
61	Molecular discrimination of Wolbachia in the Culex pipiens complex: evidence for variable bacteriophage hyperparasitism. Insect Molecular Biology, 2004, 13, 365-369.	2.0	34
62	EVOLUTION OF WOLBACHIA CYTOPLASMIC INCOMPATIBILITY TYPES. Evolution; International Journal of Organic Evolution, 2004, 58, 2156-2166.	2.3	29
63	Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus. Heredity, 2004, 93, 135-142.	2.6	149
64	Reversing Wolbachia-based population replacement. Trends in Parasitology, 2003, 19, 128-133.	3.3	86
65	Wolbachia Pipientis. Contemporary Topics in Entomology Series, 2003, , 199-216.	0.3	9
66	The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 437-445.	2.6	160
67	Characterization of Wolbachia Host Cell Range via the In Vitro Establishment of Infections. Applied and Environmental Microbiology, 2002, 68, 656-660.	3.1	84
68	Mutualistic Wolbachia Infection in <i>Aedes albopictus</i> : Accelerating Cytoplasmic Drive. Genetics, 2002, 160, 1087-1094.	2.9	159
69	<l>Wolbachia</l> -Induced Cytoplasmic Incompatibility in Single- and Superinfected <l>Aedes albopictus</l> (Diptera: Culicidae). Journal of Medical Entomology, 2001, 38, 382-387.	1.8	77
70	A Novel Technique for Removing <i>Wolbachia</i> Infections from <i>Aedes albopictus</i> (Diptera:) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
71	Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology, 1999, 29, 153-160.	2.7	345
72	Rescuing Wolbachia have been overlookedâf». Nature, 1998, 391, 852-853.	27.8	159

#	Article	IF	CITATIONS
73	Interspecific movement of the paternal sex ratio chromosome. Heredity, 1998, 81, 261-269.	2.6	15
74	Interspecific movement of the paternal sex ratio chromosome. Heredity, 1998, 81, 261-269.	2.6	3
75	Evidence for a Genomic Imprinting Sex Determination Mechanism in Nasonia vitripennis (Hymenoptera;) Tj ETQq1	1.0.7843	14 rgBT /0\ 73
76	Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont <i>Wolbachia pipientis</i> . Journal of Bacteriology, 1998, 180, 2373-2378.	2.2	593
77	The paternal sex ratio chromosome induces chromosome loss independently of Wolbachia in the wasp Nasonia vitripennis. Development Genes and Evolution, 1996, 206, 207-217.	0.9	19