
Maria Luisa Gaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2326577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation. Journal of Neuroinflammation, 2021, 18, 75.	7.2	11
2	The TLR4-MyD88 Signaling Axis Regulates Lung Monocyte Differentiation Pathways in Response to Streptococcus pneumoniae. Frontiers in Immunology, 2020, 11, 2120.	4.8	14
3	Hepatitis C Virus Influences HIV-1 Viral Splicing in Coinfected Patients. Journal of Clinical Medicine, 2020, 9, 2091.	2.4	3
4	ICOS deficiency hampers the homeostasis, development and function of NK cells. PLoS ONE, 2019, 14, e0219449.	2.5	14
5	Nrf2 Plays a Protective Role Against Intravascular Hemolysis-Mediated Acute Kidney Injury. Frontiers in Pharmacology, 2019, 10, 740.	3.5	36
6	CD45 expression discriminates waves of embryonic megakaryocytes in the mouse. Haematologica, 2019, 104, 1853-1865.	3.5	8
7	Podocytes are new cellular targets of haemoglobinâ€mediated renal damage. Journal of Pathology, 2018, 244, 296-310.	4.5	53
8	Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches. Journal of Experimental Medicine, 2017, 214, 3361-3379.	8.5	32
9	Altered marginal zone and innate-like B cells in aged senescence-accelerated SAMP8 mice with defective IgG1 responses. Cell Death and Disease, 2017, 8, e3000-e3000.	6.3	11
10	Aldosterone Induces Renal Fibrosis and Inflammatory M1-Macrophage Subtype via Mineralocorticoid Receptor in Rats. PLoS ONE, 2016, 11, e0145946.	2.5	72
11	The formation of titan cells in <i>Cryptococcus neoformans</i> depends on the mouse strain and correlates with induction of Th2-type responses. Cellular Microbiology, 2016, 18, 111-124.	2.1	41
12	Phenotypic Characterization of Macrophages from Rat Kidney by Flow Cytometry. Journal of Visualized Experiments, 2016, , .	0.3	20
13	DNGR-1 ⁺ dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia, 2015, 63, 2231-2248.	4.9	47
14	<scp>BCR–JAK2</scp> drives a myeloproliferative neoplasm in transplanted mice. Journal of Pathology, 2015, 236, 219-228.	4.5	3
15	Notch1 regulates progenitor cell proliferation and differentiation during mouse yolk sac hematopoiesis. Cell Death and Differentiation, 2014, 21, 1081-1094.	11.2	10
16	Postnatal and Adult Immunoglobulin Repertoires of Innate-Like CD19 ⁺ CD45R ^{lo} B Cells. Journal of Innate Immunity, 2014, 6, 499-514.	3.8	4
17	Dynamics of the Splenic Innate-like CD19+CD45Rlo Cell Population from Adult Mice in Homeostatic and Activated Conditions. Journal of Immunology, 2012, 189, 2300-2308.	0.8	8
18	Megakaryocytes promote hepatoepithelial liver cell development in E11.5 mouse embryos by cell-to-cell contact and by vascular endothelial growth factor A signaling. Hepatology, 2012, 56, 1934-1945.	7.3	9

Maria Luisa Gaspar

#	Article	IF	CITATIONS
19	A Role for DNA Polymerase μ in the Emerging DJ _H Rearrangements of the Postgastrulation Mouse Embryo. Molecular and Cellular Biology, 2009, 29, 1266-1275.	2.3	31
20	A Population of CD19highCD45Râ^'/lowCD21low B Lymphocytes Poised for Spontaneous Secretion of IgG and IgA Antibodies. Journal of Immunology, 2007, 179, 5326-5334.	0.8	18
21	Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Letters, 2003, 544, 176-180.	2.8	60
22	A population of c-Kitlow(CD45/TER119)– hepatic cell progenitors of 11-day postcoitus mouse embryo liver reconstitutes cell-depleted liver organoids. Journal of Clinical Investigation, 2003, 112, 1152-1163.	8.2	48
23	The first 3 days of B-cell development in the mouse embryo. Blood, 2002, 100, 4074-4081.	1.4	58
24	Role of zetaPKC in B-cell signaling and function. EMBO Journal, 2002, 21, 4049-4057.	7.8	122
25	Long-lived polyclonal B-cell lines derived from midgestation mouse embryo lymphohematopoietic progenitors reconstitute adult immunodeficient mice. Blood, 2001, 98, 1862-1871.	1.4	16
26	Both B and γ δTCR+ lymphocytes regulate α β TCR+ lymphocytes involved in superantigen specific responses. European Journal of Immunology, 2001, 31, 2811-2817.	2.9	4
27	Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO Journal, 1998, 17, 743-753.	7.8	234
28	Developmental Events from Hemopoietic Stem Cells to B-Cell Populations and Ig Repertoires. Immunological Reviews, 1994, 137, 155-171.	6.0	15
29	Isolation of peritoneal precursors of B-1 cells in the adult mouse. European Journal of Immunology, 1994, 24, 1033-1040.	2.9	23
30	A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8606-8610.	7.1	144
31	Selective expansion of idiotype sharing T and B cells in cyclosporin A-mediated autoimmunity. International Immunology, 1991, 3, 777-784.	4.0	6
32	Structure and Size Distribution of the Androgen Receptor mRNA in Wild-Type andTfm/yMutant Mice. Molecular Endocrinology, 1990, 4, 1600-1610.	3.7	35
33	SYNGENEIC GRAFT-VERSUS-HOST DISEASE INDUCED BY CYCLOSPORINE. Transplantation, 1989, 47, 1096.	1.0	0
34	The B-cell activation pathway in human systemic lupus erythematosus: Imbalancedin vitro production of lymphokines and association with serum analytical findings. Journal of Clinical Immunology, 1988, 8, 266-274.	3.8	19
35	Mutual cell interactions and the selection of immune repertoires. Trends in Immunology, 1988, 9, 204-207.	7.5	37
36	Presence of an autoantibody against a Golgi cisternal membrane protein in the serum and cerebrospinal fluid from a patient with idiopathic late onset cerebellar ataxia. Journal of Neuroimmunology, 1988, 17, 287-299.	2.3	18

#	Article	IF	CITATIONS
37	Role of interleukin 2 in inducing normalization of natural killer activity in systemic lupus erythematosus. Clinical Immunology and Immunopathology, 1988, 49, 204-214.	2.0	11
38	Development of Ly-1+ B cells in immunodeficient CBA/N mice Journal of Experimental Medicine, 1987, 166, 804-809.	8.5	21
39	Selective Expansion of a CD3+CD4-CD8- Subpopulation in Clinical Groups Associated with Human Immunodeficiency Virus Infection. Scandinavian Journal of Immunology, 1987, 25, 321-333.	2.7	11
40	Differential proliferative responses of B cells from and autoimmune NZB mice to B-cell growth factor(s). Clinical Immunology and Immunopathology, 1986, 39, 319-328.	2.0	12
41	Modification of Emerging Repertoires by Immunosuppression in Immunodeficient Mice Results in Autoimmunity. Immunological Reviews, 1986, 94, 51-74.	6.0	21