Winfried S Wels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2326568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. , 2021, 9, e002980.		28
2	Innate-like NKp30 ⁺ CD8 ⁺ T cells armed with TCR/CAR target tumor heterogeneity. Oncolmmunology, 2021, 10, 1973783.	4.6	4
3	Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opinion on Biological Therapy, 2020, 20, 1491-1501.	3.1	10
4	Directed Differentiation of Mobilized Hematopoietic Stem and Progenitor Cells into Functional NK Cells with Enhanced Antitumor Activity. Cells, 2020, 9, 811.	4.1	15
5	CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2683.	4.8	142
6	3D model for <scp>CAR</scp> â€mediated cytotoxicity using patientâ€derived colorectal cancer organoids. EMBO Journal, 2019, 38, .	7.8	200
7	Genetically engineered CAR NK cells display selective cytotoxicity against FLT3â€positive Bâ€ALL and inhibit <i>in vivo</i> leukemia growth. International Journal of Cancer, 2019, 145, 1935-1945.	5.1	60
8	High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2019, 10, 3123.	4.8	67
9	Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunology, Immunotherapy, 2018, 67, 25-38.	4.2	84
10	Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell, 2018, 174, 88-101.e16.	28.9	93
11	Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy, 2017, 19, 235-249.	0.7	142
12	Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Frontiers in Immunology, 2017, 8, 533.	4.8	232
13	Chimeric antigen receptorâ€engineered cytokineâ€induced killer cells overcome treatment resistance of preâ€Bâ€cell acute lymphoblastic leukemia and enhance survival. International Journal of Cancer, 2016, 139, 1799-1809.	5.1	51
14	<scp>CD</scp> 19â€ <scp>CAR</scp> engineered <scp>NK</scp> â€92 cells are sufficient to overcome <scp>NK</scp> cell resistance in Bâ€cell malignancies. Journal of Cellular and Molecular Medicine, 2016, 20, 1287-1294.	3.6	192
15	NK-92: an â€~off-the-shelf therapeutic' for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunology, Immunotherapy, 2016, 65, 485-492.	4.2	237
16	ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. Journal of the National Cancer Institute, 2016, 108, .	6.3	282
17	Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncolmmunology, 2016, 5, e1119354.	4.6	151
18	Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors. Journal of Immunology, 2015, 195, 2493-2501.	0.8	49

WINFRIED S WELS

#	Article	IF	CITATIONS
19	Advantages and applications of CAR-expressing natural killer cells. Frontiers in Pharmacology, 2015, 6, 21.	3.5	204
20	Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor. Molecular Therapy, 2015, 23, 330-338.	8.2	274
21	A bispecific transmembrane antibody simultaneously targeting intra―and extracellular epitopes of the epidermal growth factor receptor inhibits receptor activation and tumor cell growth. International Journal of Cancer, 2014, 134, 2547-2559.	5.1	3
22	Selective Induction of Cancer Cell Death by Targeted Granzyme B. Antibodies, 2013, 2, 130-151.	2.5	4
23	Arming NK cells with enhanced antitumor activity. Oncolmmunology, 2013, 2, e25220.	4.6	24
24	TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Molecular Therapy - Nucleic Acids, 2013, 2, e105.	5.1	371
25	Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. OncoImmunology, 2013, 2, e26527.	4.6	154
26	EGFR-Targeted Granzyme B Expressed in NK Cells Enhances Natural Cytotoxicity and Mediates Specific Killing of Tumor Cells. PLoS ONE, 2013, 8, e61267.	2.5	27
27	Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunology, Immunotherapy, 2012, 61, 1451-1461.	4.2	153
28	Surface Charge-Modification Prevents Sequestration and Enhances Tumor-Cell Specificity of a Recombinant Granzyme B–TGFα Fusion Protein. Bioconjugate Chemistry, 2012, 23, 1567-1576.	3.6	13
29	NK cells engineered to express a GD ₂ â€specific antigen receptor display builtâ€in ADCCâ€like activity against tumour cells of neuroectodermal origin. Journal of Cellular and Molecular Medicine, 2012, 16, 569-581.	3.6	163
30	Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein. PLoS ONE, 2010, 5, e14404.	2.5	17
31	Induction of programmed cell death in ErbB2/HER2-expressing cancer cells by targeted delivery of apoptosis-inducing factor. Molecular Cancer Therapeutics, 2009, 8, 1526-1535.	4.1	31
32	Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leukemia Research, 2009, 33, 1255-1259.	0.8	147
33	Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunology, Immunotherapy, 2008, 57, 411-423.	4.2	192
34	Cell binding, internalization and cytotoxic activity of human granzyme B expressed in the yeast Pichia pastoris. Biochemical Journal, 2006, 394, 563-573.	3.7	25
35	A universal strategy for stable intracellular antibodies. Journal of Immunological Methods, 2005, 303, 19-39.	1.4	39
36	Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas. Breast Cancer Research, 2005, 7, R617-26.	5.0	84

#	Article	IF	CITATIONS
37	Regression of Cutaneous Tumor Lesions in Patients Intratumorally Injected with a Recombinant Single-chain Antibody-toxin Targeted to ErbB2/HER2. Breast Cancer Research and Treatment, 2003, 82, 155-164.	2.5	86