
Winfried S Wels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2326568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Molecular Therapy - Nucleic Acids, 2013, 2, e105.	5.1	371
2	ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. Journal of the National Cancer Institute, 2016, 108, .	6.3	282
3	Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor. Molecular Therapy, 2015, 23, 330-338.	8.2	274
4	NK-92: an â€~off-the-shelf therapeutic' for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunology, Immunotherapy, 2016, 65, 485-492.	4.2	237
5	Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Frontiers in Immunology, 2017, 8, 533.	4.8	232
6	Advantages and applications of CAR-expressing natural killer cells. Frontiers in Pharmacology, 2015, 6, 21.	3.5	204
7	3D model for <scp>CAR</scp> â€mediated cytotoxicity using patientâ€derived colorectal cancer organoids. EMBO Journal, 2019, 38, .	7.8	200
8	Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunology, Immunotherapy, 2008, 57, 411-423.	4.2	192
9	<scp>CD</scp> 19â€ <scp>CAR</scp> engineered <scp>NK</scp> â€92 cells are sufficient to overcome <scp>NK</scp> cell resistance in Bâ€cell malignancies. Journal of Cellular and Molecular Medicine, 2016, 20, 1287-1294.	3.6	192
10	NK cells engineered to express a GD ₂ â€specific antigen receptor display builtâ€in ADCCâ€like activity against tumour cells of neuroectodermal origin. Journal of Cellular and Molecular Medicine, 2012, 16, 569-581.	3.6	163
11	Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncolmmunology, 2013, 2, e26527.	4.6	154
12	Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunology, Immunotherapy, 2012, 61, 1451-1461.	4.2	153
13	Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncolmmunology, 2016, 5, e1119354.	4.6	151
14	Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leukemia Research, 2009, 33, 1255-1259.	0.8	147
15	Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy, 2017, 19, 235-249.	0.7	142
16	CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2683.	4.8	142
17	Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell, 2018, 174, 88-101.e16.	28.9	93
18	Regression of Cutaneous Tumor Lesions in Patients Intratumorally Injected with a Recombinant Single-chain Antibody-toxin Targeted to ErbB2/HER2. Breast Cancer Research and Treatment, 2003, 82, 155-164.	2.5	86

WINFRIED S WELS

#	Article	IF	CITATIONS
19	Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas. Breast Cancer Research, 2005, 7, R617-26.	5.0	84
20	Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunology, Immunotherapy, 2018, 67, 25-38.	4.2	84
21	High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2019, 10, 3123.	4.8	67
22	Genetically engineered CAR NK cells display selective cytotoxicity against FLT3â€positive Bâ€ALL and inhibit <i>in vivo</i> leukemia growth. International Journal of Cancer, 2019, 145, 1935-1945.	5.1	60
23	Chimeric antigen receptorâ€engineered cytokineâ€induced killer cells overcome treatment resistance of preâ€Bâ€cell acute lymphoblastic leukemia and enhance survival. International Journal of Cancer, 2016, 139, 1799-1809.	5.1	51
24	Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors. Journal of Immunology, 2015, 195, 2493-2501.	0.8	49
25	A universal strategy for stable intracellular antibodies. Journal of Immunological Methods, 2005, 303, 19-39.	1.4	39
26	Induction of programmed cell death in ErbB2/HER2-expressing cancer cells by targeted delivery of apoptosis-inducing factor. Molecular Cancer Therapeutics, 2009, 8, 1526-1535.	4.1	31
27	Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. , 2021, 9, e002980.		28
28	EGFR-Targeted Granzyme B Expressed in NK Cells Enhances Natural Cytotoxicity and Mediates Specific Killing of Tumor Cells. PLoS ONE, 2013, 8, e61267.	2.5	27
29	Cell binding, internalization and cytotoxic activity of human granzyme B expressed in the yeast Pichia pastoris. Biochemical Journal, 2006, 394, 563-573.	3.7	25
30	Arming NK cells with enhanced antitumor activity. Oncolmmunology, 2013, 2, e25220.	4.6	24
31	Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein. PLoS ONE, 2010, 5, e14404.	2.5	17
32	Directed Differentiation of Mobilized Hematopoietic Stem and Progenitor Cells into Functional NK Cells with Enhanced Antitumor Activity. Cells, 2020, 9, 811.	4.1	15
33	Surface Charge-Modification Prevents Sequestration and Enhances Tumor-Cell Specificity of a Recombinant Granzyme B–TGFα Fusion Protein. Bioconjugate Chemistry, 2012, 23, 1567-1576.	3.6	13
34	Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opinion on Biological Therapy, 2020, 20, 1491-1501.	3.1	10
35	Selective Induction of Cancer Cell Death by Targeted Granzyme B. Antibodies, 2013, 2, 130-151.	2.5	4
36	Innate-like NKp30 ⁺ CD8 ⁺ T cells armed with TCR/CAR target tumor heterogeneity. Oncolmmunology, 2021, 10, 1973783.	4.6	4

#	Article	IF	CITATIONS
37	A bispecific transmembrane antibody simultaneously targeting intra―and extracellular epitopes of the epidermal growth factor receptor inhibits receptor activation and tumor cell growth. International Journal of Cancer, 2014, 134, 2547-2559.	5.1	3